Skip to main content

An Innovative Standard Operation Procedure for Isolating GMP-Grade CD4+CD25+ T Cells from Non-Mobilized Leukapheresis

  • Protocol
  • First Online:
  • 2021 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1899))

Abstract

This SOP describes a closed system for isolating GMP-grade CD4+CD25+ T cells from non-mobilized leukapheresis collections (nMLCs), independent of a clean room in a certified GMP premises, by using CliniMACS format GMP grade reagents (CD25-labeled magnetic beads with/without pre-depletion of CD8+ T cells and CD19+ B cells), a GMP grade-A laminar hood and CliniMACS cell processing system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. http://www.who.int/medicines/areas/quality_safety/quality_assurance/about/en/index.html

  2. http://www.hta.gov.uk/

  3. Burgstaler EA (2006) Blood component collection by apheresis. J Clin Apher 21:142–151

    Article  Google Scholar 

  4. Hester J (2000) Peripheral blood stem cell collection: the interaction of technology, procedure, and biological factors. Transfus Sci 23:125–132

    Article  CAS  Google Scholar 

  5. Zhang W, Frith E, Belfield H, Smythe J, Clarke S, Watt SM, Danby R, Benjamin S, Peniket A, Roberts DJ (2015) An innovative method to generate a GMP-grade regulatory T cell product from non-mobilised leukapheresis donors independent of a clean room facility. Cytotheropy

    Google Scholar 

  6. Hester J, Bojko P, Rondon G, Champlin R (1996) Integration of biological, procedural, apheresis principles of peripheral blood stem cell transplantation programs. Transfus Sci 17:585–590

    Article  CAS  Google Scholar 

  7. Steininger PA, Smith R, Geier C, Zimmermann R, Eckstein R, Strasser EF (2013) Leukapheresis in non-cytokine-stimulated donors with a new apheresis system: first-time collection results and evaluation of subsequent cryopreservation. Transfusion 53:747–756

    Article  CAS  Google Scholar 

  8. Welniak LA, Blazar BR, Murphy WJ (2007) Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol 25:139–170

    Article  CAS  Google Scholar 

  9. Gyurkocza B, Rezvani A, Storb RF (2010) Allogeneic hematopoietic cell transplantation: the state of the art. Expert Rev Hematol 3(3):285–299

    Article  Google Scholar 

  10. Ringden O, Karlsson H, Olsson R, Omazic B, Uhlin M (2009) The allogeneic graft-versus-cancer effect. Br J Haematol 147(5):614–633

    Article  Google Scholar 

  11. M E, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, Negrin RS (2003) CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9(9):1144–1150

    Article  Google Scholar 

  12. Trzonkowski P, Bieniaszewska M, Juścińska J, Dobyszuk A, Krzystyniak A, Marek N, Myśliwska J, Hellmann A (2009) First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin Immunol 133(1):22–26

    Article  CAS  Google Scholar 

  13. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Del Papa B, Perruccio K, Ruggeri L, Sportoletti P, Rosati E, Marconi P, Falini B, Reisner Y, Velardi A, Aversa F, Martelli MF (2011) Immunoselection and clinical use of T regulatory cells in HLA-haploidentical stem cell transplantation. Best Pract Res Clin Haematol 24(3):459–466

    Article  CAS  Google Scholar 

  14. Edinger M, Hoffmann P (2011) Regulatory T cells in stem cell transplantation: strategies and first clinical experiences. Curr Opin Immunol 23(5):679–684

    Article  CAS  Google Scholar 

  15. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, Defor T, Levine BL, June CH, Rubinstein P, McGlave PB, Blazar BR, Wagner JE (2011) Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117(3):1061–1070

    Article  CAS  Google Scholar 

  16. A G, Landau DA, Martin GH, Bonduelle O, Grinberg-Bleyer Y, Matheoud D, Grégoire S, Baillou C, Combadière B, Piaggio E, Cohen JL (2011) Immune reconstitution is preserved in hematopoietic stem cell transplantation coadministered with regulatory T cells for GVHD prevention. Blood 117(10):2975–2983

    Article  Google Scholar 

  17. Martelli MF, Di Ianni M, Ruggeri L, Falzetti F, Carotti A, Terenzi A, Pierini A, Massei MS, Amico L, Urbani E, Del Papa B, Zei T, Iacucci Ostini R, Cecchini D, Tognellini R, Reisner Y, Aversa F, Falini B, Velardi A (2014) HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood 124(4):638–644

    Article  CAS  Google Scholar 

  18. Danby RD, Zhang W, Medd P, Littlewood TJ, Peniket A, Rocha V, Roberts DJ (2016) High proportions of regulatory T cells in PBSC grafts predict improved survival after allogeneic haematopoietic SCT. Bone Marrow Transplantation 51:110–118

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of NHS Blood and Transplant, the National Institute for Health Biomedical Research Centre Program and the NHSBT and Department of Haematology Trust Funds. This report presents independent research commissioned by the National Institutes for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Grant Reference Number RP-PG-0310-1003) (WZ, DJR, SMW). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health.

The authors wish to thank all donors who participated in this study and the Therapeutic Apheresis Services Unit NHSBT Oxford for providing the leukapheresis collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, W., Watt, S.M., Roberts, D.J. (2019). An Innovative Standard Operation Procedure for Isolating GMP-Grade CD4+CD25+ T Cells from Non-Mobilized Leukapheresis. In: Boyd, A. (eds) Immunological Tolerance. Methods in Molecular Biology, vol 1899. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8938-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8938-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8936-2

  • Online ISBN: 978-1-4939-8938-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics