Skip to main content

Imaging and Manipulation of Extracellular Traps by Atomic Force Microscopy

  • Protocol
  • First Online:
  • 2417 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1886))

Abstract

Neutrophil extracellular traps (NETs) are part of an immunological response and one of the mechanisms by which neutrophils protect the host from pathogen invasion and proliferation. Notwithstanding their protective role, NETs have also been linked to the development of a variety of disorders, including cardiovascular and autoimmune diseases. Since the first reports on NETs in 2004 it has been possible to image NETs by a variety of imaging techniques. Despite this, such reports seldomly include contact probe methods, and therefore lack the unique insights such techniques typically provide. In fact, more than 10 years have passed since the discovery of NETs, and although their importance as part of a unique cellular response mechanism has become very clear, studies that attempt to address them by atomic force microscopy (AFM) remain very limited. Particularly striking is the almost absent information on the mechanical properties of NETs, and factors that may influence them. The fact that NETs are a particularly adhesive network of filaments poses a considerable technical challenge for contact probe methods and can limit advances involving either imaging or manipulation of NETs by AFM. The current set of protocols aims at aiding a knowledgeable AFM operator to obtain AFM images and to perform force spectroscopy experiments with such samples. A variety of different topics, including sample preparation and data analysis, are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  CAS  Google Scholar 

  2. Wardini AB, Guimaraes-Costa AB, Nascimento MT, Nadaes NR, Danelli MG, Mazur C et al (2010) Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J Gen Virol 91(Pt 1):259–264

    Article  CAS  Google Scholar 

  3. Ermert D, Urban CF, Laube B, Goosmann C, Zychlinsky A, Brinkmann V (2009) Mouse neutrophil extracellular traps in microbial infections. J Innate Immun 1(3):181–193

    Article  CAS  Google Scholar 

  4. Chuammitri P, Ostojic J, Andreasen CB, Redmond SB, Lamont SJ, Palic D (2009) Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet Immunol Immunopathol 129(1–2):126–131

    Article  CAS  Google Scholar 

  5. Ng TH, Chang SH, Wu MH, Wang HC (2013) Shrimp hemocytes release extracellular traps that kill bacteria. Dev Comp Immunol 41(4):644–651

    Article  CAS  Google Scholar 

  6. Poirier AC, Schmitt P, Rosa RD, Vanhove AS, Kieffer-Jaquinod S, Rubio TP et al (2014) Antimicrobial histones and DNA traps in invertebrate immunity: evidences in Crassostrea gigas. J Biol Chem 289(36):24821–24831

    Article  CAS  Google Scholar 

  7. Barrientos L, Bignon A, Gueguen C, de Chaisemartin L, Gorges R, Sandre C et al (2014) Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells. J Immunol 193(11):5689–5698

    Article  CAS  Google Scholar 

  8. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25(11):1106–1118

    Article  CAS  Google Scholar 

  9. Wang S, Wang Y (2013) Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta 1829(10):1126–1135

    Article  CAS  Google Scholar 

  10. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184(2):205–213

    Article  CAS  Google Scholar 

  11. Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L et al (2012) PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol 3:307

    Article  Google Scholar 

  12. Cooper PR, Palmer LJ, Chapple IL (2013) Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontol 2000 63(1):165–197

    Article  Google Scholar 

  13. Sorensen OE, Borregaard N (2016) Neutrophil extracellular traps—the dark side of neutrophils. J Clin Invest 126(5):1612–1620

    Article  Google Scholar 

  14. Obermayer A, Stoiber W, Krautgartner WD, Klappacher M, Kofler B, Steinbacher P et al (2014) New aspects on the structure of neutrophil extracellular traps from chronic obstructive pulmonary disease and in vitro generation. PLoS One 9(5):e97784

    Article  CAS  Google Scholar 

  15. Pires RH, Felix SB, Delcea M (2016) The architecture of neutrophil extracellular traps investigated by atomic force microscopy. Nanoscale 8(29):14193–14202

    Article  CAS  Google Scholar 

  16. de Buhr N, von Kockritz-Blickwede M (2016) How neutrophil extracellular traps become visible. J Immunol Res 2016:4604713

    PubMed  PubMed Central  Google Scholar 

  17. Manzenreiter R, Kienberger F, Marcos V, Schilcher K, Krautgartner WD, Obermayer A et al (2012) Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. J Cyst Fibros 11(2):84–92

    Article  CAS  Google Scholar 

  18. Gregurec D, Wang G, Pires RH, Kosutic M, Lüdtke T, Delcea M et al (2016) Bioinspired titanium coatings: self-assembly of collagen–alginate films for enhanced osseointegration. J Mater Chem B 4:1978–1986

    Article  CAS  Google Scholar 

  19. Wang H, Bash R, Yodh JG, Hager GL, Lohr D, Lindsay SM (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys J 83(6):3619–3625

    Article  CAS  Google Scholar 

  20. Pires RH, Saraiva MJ, Damas AM, Kellermayer MS (2011) Structure and assembly-disassembly properties of wild-type transthyretin amyloid protofibrils observed with atomic force microscopy. J Mol Recognit 24(3):467–476

    Article  CAS  Google Scholar 

  21. Pires RH, Karsai A, Saraiva MJ, Damas AM, Kellermayer MS (2012) Distinct annular oligomers captured along the assembly and disassembly pathways of transthyretin amyloid protofibrils. PLoS One 7(9):e44992

    Article  CAS  Google Scholar 

  22. Gyimesi M, Pires RH, Billington N, Sarlos K, Kocsis ZS, Modos K et al (2013) Visualization of human Bloom’s syndrome helicase molecules bound to homologous recombination intermediates. FASEB J 27(12):4954–4964

    Article  CAS  Google Scholar 

  23. Hutter J, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873

    Article  CAS  Google Scholar 

  24. Reis LA, Rocha MS (2017) DNA interaction with DAPI fluorescent dye: force spectroscopy decouples two different binding modes. Biopolymers 107(5):e23015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo H. Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pires, R.H., Delcea, M., Felix, S.B. (2019). Imaging and Manipulation of Extracellular Traps by Atomic Force Microscopy. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics