Skip to main content

Generating Goat Mammary Gland Bioreactors for Producing Recombinant Proteins by Gene Targeting

  • Protocol
  • First Online:
Book cover Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

Exogenous genes can be site-specifically integrated into the genomic DNA of animals by homologous recombination, generating transgenic animals. These animals have a clear hereditary background, although position effects of the exogenous genes and potential functional disruption of host genes can be caused by the genetic inserts. Therefore, the generation of mammary gland bioreactors via gene-targeting methods is a great asset for producing recombinant proteins in milk. Here, we describe a method of generating gene-targeted goats with the human alpha-lactalbumin gene (hα-LA) integrated into the beta-lactoglobulin gene (BLG) locus. The milk from these goats will be less allergenic and will be enriched with components of human milk protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292

    Article  CAS  Google Scholar 

  2. Anastassiadis K, Schnutgen F, von Melchner H, Stewart AF (2013) Gene targeting and site-specific recombination in mouse ES cells. Methods Enzymol 533:133–155

    Article  CAS  Google Scholar 

  3. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2015) Genome edited sheep and cattle. Transgenic Res 24(1):147–153

    Article  CAS  Google Scholar 

  4. Laible G, Alonso-Gonzalez L (2009) Gene targeting from laboratory to livestock: current status and emerging concepts. Biotechnol J 4(9):1278–1292

    Article  CAS  Google Scholar 

  5. Wang X, Niu Y, Zhou J, Yu H, Kou Q, Lei A, Zhao X, Yan H, Cai B, Shen Q, Zhou S, Zhu H, Zhou G, Niu W, Hua J, Jiang Y, Huang X, Ma B, Chen Y (2016) Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep 6:32271

    Article  CAS  Google Scholar 

  6. Samiec M, Skrzyszowska M (2011) Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics--recent achievements. Pol J Vet Sci 14(2):317–328

    Article  CAS  Google Scholar 

  7. Murray JD, Maga EA (2016) Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference. Transgenic Res 25(3):321–327

    Article  CAS  Google Scholar 

  8. Kuroiwa Y, Kasinathan P, Matsushita H, Sathiyaselan J, Sullivan EJ, Kakitani M, Tomizuka K, Ishida I, Robl JM (2004) Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat Genet 36(7):775–780

    Article  CAS  Google Scholar 

  9. Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y (2007) Production of cattle lacking prion protein. Nat Biotechnol 25(1):132–138

    Article  CAS  Google Scholar 

  10. Zhao LH, Zhao YH, Liang H, Yun T, Han XJ, Zhang ML, Zhou X, Hou DX, Li RF, Li XL (2015) A promoter trap vector for knocking out bovine myostatin gene with high targeting efficiency. Genet Mol Res 14(1):2750–2761

    Article  CAS  Google Scholar 

  11. Takahagi Y, Fujimura T, Miyagawa S, Nagashima H, Shigehisa T, Shirakura R, Murakami H (2005) Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol Reprod Dev 71(3):331–338

    Article  CAS  Google Scholar 

  12. Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, Prather RS (2008) Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118(4):1571–1577

    Article  CAS  Google Scholar 

  13. Klymiuk N, Mundhenk L, Kraehe K, Wuensch A, Plog S, Emrich D, Langenmayer MC, Stehr M, Holzinger A, Kroner C, Richter A, Kessler B, Kurome M, Eddicks M, Nagashima H, Heinritzi K, Gruber AD, Wolf E (2012) Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med 90(5):597–608 Berl

    Article  CAS  Google Scholar 

  14. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405(6790):1066–1069

    Article  CAS  Google Scholar 

  15. Yu G, Chen J, Yu H, Liu S, Xu X, Sha H, Zhang X, Wu G, Xu S, Cheng G (2006) Functional disruption of the prion protein gene in cloned goats. J Gen Virol 87(Pt 4):1019–1027

    Article  CAS  Google Scholar 

  16. Zhu C, Li B, Yu G, Chen J, Yu H, Xu X, Wu Y, Zhang A, Cheng G (2009) Production of Prnp −/− goats by gene targeting in adult fibroblasts. Transgenic Res 18(2):163–171

    Article  CAS  Google Scholar 

  17. Luo Y, Wang Y, Liu J, Cui C, Wu Y, Lan H, Chen Q, Liu X, Quan F, Guo Z, Zhang Y (2016) Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands. Sci Rep 6:20657

    Article  CAS  Google Scholar 

  18. Cheng Y, An LY, Yuan YG, Wang Y, Du FL, Yu BL, Zhang ZH, Huang YZ, Yang TJ (2012) Hybrid expression cassettes consisting of a milk protein promoter and a cytomegalovirus enhancer significantly increase mammary-specific expression of human lactoferrin in transgenic mice. Mol Reprod Dev 79(8):573–585

    Article  CAS  Google Scholar 

  19. An LY, Yuan YG, Yu BL, Yang TJ, Cheng Y (2012) Generation of human lactoferrin transgenic cloned goats using donor cells with dual markers and a modified selection procedure. Theriogenology 78(6):1303–1311

    Article  CAS  Google Scholar 

  20. Zou X, Wang Y, Cheng Y, Yang Y, Ju H, Tang H, Shen Y, Mu Z, Xu S, Du M (2002) Generation of cloned goats (Capra hircus) from transfected foetal fibroblast cells, the effect of donor cell cycle. Mol Reprod Dev 61(2):164–172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuliang Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

An, L., Yang, L., Huang, Y., Cheng, Y., Du, F. (2019). Generating Goat Mammary Gland Bioreactors for Producing Recombinant Proteins by Gene Targeting. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics