Skip to main content
Book cover

Xenopus pp 55–65Cite as

Targeted Genome Engineering in Xenopus Using the Transcription Activator-Like Effector Nuclease (TALEN) Technology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

Targeted genome engineering technologies are revolutionizing the field of functional genomics and have been extensively used in a variety of model organisms, including X. tropicalis and X. laevis. The original methods based on Zn-finger proteins coupled to endonuclease domains were initially replaced by the more efficient and straightforward transcription activator-like effector nucleases (TALENs), adapted from plant pathogenic Xanthomonas species. Although functional genomics are more recently dominated by the even faster and more convenient CRISPR/Cas9 technology, the use of TALENs may still be preferred in a number of cases. We have successfully implemented this technology in Xenopus and in this chapter we describe our working protocol for targeted genome editing in X. tropicalis using TALENs.

The published version of the book has the family name of author that was erroneously captured as given name in the XML. This has now been updated.

The updated online version of this book can be found at https://doi.org/10.1007/978-1-4939-8784-9

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141(3):707–714. https://doi.org/10.1242/dev.099853

    Article  CAS  PubMed  Google Scholar 

  2. Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CHK, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109:17484–17489. https://doi.org/10.1073/pnas.1215421109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Naert T, Van Nieuwenhuysen T, Vleminckx K (2017) TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models. Genesis 55:e23005. https://doi.org/10.1002/dvg.23005

    Article  CAS  Google Scholar 

  4. Suzuki K-IT, Isoyama Y, Kashiwagi K, Sakuma T, Ochiai H, Sakamoto N, Furuno N, Kashiwagi A, Yamamoto T (2013) High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biology Open 2:448–452. https://doi.org/10.1242/bio.20133855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tandon P, Conlon F, Furlow JD, Horb ME (2016) Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Dev Biol 426(2):325–335. https://doi.org/10.1016/j.ydbio.2016.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ratzan W, Falco R, Salanga C, Salanga M, Horb ME (2016) Generation of a Xenopus laevis F1 albino J strain by genome editing and oocyte host-transfer. Dev Biol 426(2):188–193. https://doi.org/10.1016/j.ydbio.2016.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Naert T, Colpaert R, Van Nieuwenhuysen T, Dimitrakopoulou D, Leoen J, Haustraete J, Boel A, Steyaert W, Lepez T, Deforce D, Willaert A, Creytens D, Vleminckx K (2016) CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep 6:35264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Moody SA (1987) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119:560–578. https://doi.org/10.1016/0012-1606(87)90059-5

    Article  CAS  PubMed  Google Scholar 

  9. Moody SA (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122:300–319. https://doi.org/10.1016/0012-1606(87)90296-X

    Article  CAS  PubMed  Google Scholar 

  10. Van Nieuwenhuysen T, Naert T, Tran HT, Van Imschoot G, Geurs S, Sanders E, Creytens D, Van Roy F, Vleminckx K (2015) TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis. Oncoscience 2:555–566

    Article  PubMed Central  PubMed  Google Scholar 

  11. Frock RL, Hu J, Meyers RM, Ho Y-J, Kii E, Alt FW (2014) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33:179–186. https://doi.org/10.1038/nbt.3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, Chang T, Huang H, Lin R-J, Yee J-K (2015) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33:175–178. https://doi.org/10.1038/nbt.3127

    Article  CAS  PubMed  Google Scholar 

  13. Kay S, Bonas U (2009) How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12:37–43. https://doi.org/10.1016/j.mib.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  14. Szurek B, Marois E, Bonas U, Van den Ackerveken G (2001) Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J 26:523–534. https://doi.org/10.1046/j.0960-7412.2001.01046.x

    Article  CAS  PubMed  Google Scholar 

  15. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science (New York, NY) 326:1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  Google Scholar 

  16. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science (New York, NY) 326:1501. https://doi.org/10.1126/science.1178817

    Article  CAS  Google Scholar 

  17. Cong L, Zhou R, Kuo Y-C, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968. https://doi.org/10.1038/ncomms1962

    Article  CAS  PubMed  Google Scholar 

  18. Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595. https://doi.org/10.1038/nbt.2304

    Article  CAS  PubMed  Google Scholar 

  19. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Meth 8:74–79. https://doi.org/10.1038/nmeth.1539

    Article  CAS  Google Scholar 

  20. Lin Y, Fine EJ, Zheng Z, Antico CJ, Voit RA, Porteus MH, Cradick TJ, Bao G (2014) SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Res 42:e47. https://doi.org/10.1093/nar/gkt1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40:e117–e117. https://doi.org/10.1093/nar/gks624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reyon D, Khayter C, Regan MR, Joung JK, Sander JD (2012) Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly. Current protocols in molecular biology/edited by Frederick M Ausubel et al Chapter 12:Unit 12.15. doi:https://doi.org/10.1002/0471142727.mb1215s100

  23. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465. https://doi.org/10.1038/nbt.2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat Biotechnol 31:76–81. https://doi.org/10.1038/nbt.2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by golden gate cloning. PLoS One 6:e19722. https://doi.org/10.1371/journal.pone.0019722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82. https://doi.org/10.1093/nar/gkr218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ (2012) TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:W117–W122. https://doi.org/10.1093/nar/gks608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D (2007) Zinc finger targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35:W599–W605. https://doi.org/10.1093/nar/gkm349

    Article  PubMed  PubMed Central  Google Scholar 

  29. Neff KL, Argue DP, Ma AC, Lee HB, Clark KJ, Ekker SC (2013) Mojo hand, a TALEN design tool for genome editing applications. BMC Bioinformatics 14:1. https://doi.org/10.1186/1471-2105-14-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heigwer F, Kerr G, Walther N, Glaeser K, Pelz O, Breinig M, Boutros M (2013) E-TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Res 41:e190. https://doi.org/10.1093/nar/gkt789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44:W272–W276. https://doi.org/10.1093/nar/gkw398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407. https://doi.org/10.1093/nar/gku410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fine EJ, Cradick TJ, Zhao CL, Lin Y, Bao G (2014) An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Res 42:e42. https://doi.org/10.1093/nar/gkt1326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory is supported by the Research Foundation–Flanders (FWO-Vlaanderen) (grants G0A1515N and G029413N), by the Belgian Science Policy (Interuniversity Attraction Poles—IAP7/07) and by the Concerted Research Actions from Ghent University (BOF15/GOA/011). Further support was obtained by the Hercules Foundation, Flanders (grant AUGE/11/14) and the Desmoid Tumor Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Vleminckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van Nieuwenhuysen, T., Vleminckx, K. (2018). Targeted Genome Engineering in Xenopus Using the Transcription Activator-Like Effector Nuclease (TALEN) Technology. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics