Skip to main content

Markers and Methods to Study Adult Midgut Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1842))

Abstract

Stem cells have emerged as a promising cell source to heal, replace or regenerate tissue and organs damaged by aging, injury or diseases. The intestinal epithelium is the most rapidly renewing tissue in our body, which is maintained by intestinal stem cells (ISCs), located at the bottom of the crypts. ISCs continuously replace lost or injured intestinal epithelial cells in organisms ranging from Drosophila to humans. The adult Drosophila midgut provides an excellent in vivo model system to study ISC behavior during stress, regeneration, aging and infection. There are several signaling pathways/genes have been identified to regulate ISCs self-renewal and differentiation during normal and pathological conditions. A significant number of genetic tools and markers have been developed in the last one decade to study Drosophila ISCs behavior. Here, we describe some of the markers and methods used to study ISCs behavior in adult midgut of Drosophila.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Singh SR (2012) Stem cell niche in tissue homeostasis, aging and cancer. Curr Med Chem 19(35):5965–5974

    Article  CAS  PubMed  Google Scholar 

  2. Soteriou D, Fuchs Y (2018) A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nat Rev Cancer 18(3):187–201

    Article  CAS  PubMed  Google Scholar 

  3. Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145:851–862

    Article  CAS  PubMed  Google Scholar 

  4. Amcheslavsky A, Jiang J, Ito N, Ip YT (2011) Tuberous sclerosis complex and Myc coordinate intestinal stem cell growth and division in Drosophila. J Cell Biol 193:695–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R (2011) EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 354:31–43

    Article  CAS  PubMed  Google Scholar 

  6. Singh SR, Liu Y, Zhao J, Zeng X, Hou SX (2016) The novel tumour suppressor Madm regulates stem cell competition in the Drosophila testis. Nat Commun 7:10473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hou SX, Singh SR (2017) Stem-cell-based tumorigenesis in adult Drosophila. Curr Top Dev Biol 121:311–337

    Article  CAS  PubMed  Google Scholar 

  8. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  CAS  Google Scholar 

  9. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    Article  CAS  Google Scholar 

  10. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40:915–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474

    Article  CAS  PubMed  Google Scholar 

  12. Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–479

    Article  CAS  PubMed  Google Scholar 

  13. Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315:988–992

    Article  CAS  PubMed  Google Scholar 

  14. Guo Z, Ohlstein B (2015) Bidirectional notch signaling regulates Drosophila intestinal stem cell multipotency. Science 350(6263):aab0988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeng X, Hou SX (2015) Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development 142(4):644–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He L, Si G, Huang J, Samuel ADT, Perrimon N (2018) Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 555(7694):103–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen J, Xu N, Wang C, Huang P, Huang H, Jin Z, Yu Z, Cai T, Jiao R, Xi R (2018) Transient Scute activation via a self-stimulatory loop directs enteroendocrine cell pair specification from self-renewing intestinal stem cells. Nat Cell Biol 20(2):152–161

    Article  CAS  PubMed  Google Scholar 

  18. Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3:442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi NH, Kim JG, Yang DJ, Kim YS, Yoo MA (2008) Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7:318–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amcheslavsky A, Jiang J, Y. T. I (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Apidianakis Y, Pitsouli C, Perrimon N, Rahme L (2009) Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 106:20883–20888

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buszczak M, Paterno S, Spradling AC (2009) Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny. Science 323:248–251

    Article  CAS  PubMed  Google Scholar 

  24. Bardin AJ, Perdigoto CN, Southall TD, Brand AH, Schweisguth F (2010) Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 137:705–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84–95

    Article  CAS  PubMed  Google Scholar 

  27. Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137:4147–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee WC, Beebe K, Sudmeier L, Micchelli CA (2009) Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 136:2255–2264

    Article  CAS  PubMed  Google Scholar 

  29. Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107:21064–21069

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mathur D, Bost A, Driver I, Ohlstein B (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327:210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin G, Xu N, Xi R (2008) Paracrine Wingless signaling controls self-renewal of Drosophila intestinal stem cells. Nature 455:1119–1123

    Article  CAS  PubMed  Google Scholar 

  32. Liu W, Singh SR, Hou SX (2010) JAK-STAT is restrained by notch to control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem 109:992–999

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Singh SR, Zeng X, Zhao J, Liu Y, Hou G, Liu H, Hou SX (2016) The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila. Nature 538(7623):109–113

    Article  CAS  PubMed  Google Scholar 

  34. Zeng X, Han L, Singh SR, Liu H, Neumüller RA, Yan D, Hu Y, Liu Y, Liu W, Lin X, Hou SX (2015) Genome-wide RNAi screen identifies networks involved in intestinal stem cell regulation in Drosophila. Cell Rep 10(7):1226–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hochmuth CE, Biteau B, Bohmann D, Jasper H (2011) Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Staley BK, Irvine KD (2010) Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol 20:1580–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Korzelius J, Naumann SK, Loza-Coll MA, Chan JS, Dutta D, Oberheim J, Gläßer C, Southall TD, Brand AH, Jones DL, Edgar BA (2014) Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells. EMBO J 33(24):2967–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dutta D, Dobson AJ, Houtz PL, Gläßer C, Revah J, Korzelius J, Patel PH, Edgar BA, Buchon N (2015) Regional cell-specific Transcriptome mapping reveals regulatory complexity in the adult Drosophila midgut. Cell Rep 12(2):346–358

    Article  CAS  PubMed  Google Scholar 

  39. Koehler CL, Perkins GA, Ellisman MH, Jones DL (2017) Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging. J Cell Biol 216(8):2315–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lindberg BG, Tang X, Dantoft W, Gohel P, Seyedoleslami Esfahani S, Lindvall JM, Engström Y (2018) Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis. PLoS Pathog 14(3):e1006936

    Article  PubMed  PubMed Central  Google Scholar 

  41. Houtz P, Bonfini A, Liu X, Revah J, Guillou A, Poidevin M, Hens K, Huang HY, Deplancke B, Tsai YC, Buchon N (2017) Hippo, TGF-β, and Src-MAPK pathways regulate transcription of the upd3 cytokine in Drosophila enterocytes upon bacterial infection. PLoS Genet 13(11):e1007091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu C, Luo J, He L, Montell C, Perrimon N (2017) Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca2+ signaling in the Drosophila midgut. Elife 6. Pii: e22441. https://doi.org/10.7554/eLife.22441

  43. Jin Y, Patel PH, Kohlmaier A, Pavlovic B, Zhang C, Edgar BA (2017) Intestinal stem cell pool regulation in Drosophila. Stem Cell Reports 8(6):1479–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tian A, Wang B, Jiang J (2017) Injury-stimulated and self-restrained BMP signaling dynamically regulates stem cell pool size during Drosophila midgut regeneration. Proc Natl Acad Sci U S A 114(13):E2699–E2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lan Q, Cao M, Kollipara RK, Rosa JB, Kittler R, Jiang H (2018) FoxA transcription factor fork head maintains the intestinal stem/progenitor cell identities in Drosophila. Dev Biol 433(2):324–343

    Article  CAS  PubMed  Google Scholar 

  46. Resnik-Docampo M, Koehler CL, Clark RI, Schinaman JM, Sauer V, Wong DM, Lewis S, D’Alterio C, Walker DW, Jones DL (2017) Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis. Nat Cell Biol 19(1):52–59

    Article  CAS  PubMed  Google Scholar 

  47. Tian A, Benchabane H, Wang Z, Ahmed Y (2016) Regulation of stem cell proliferation and cell fate specification by wingless/Wnt signaling gradients enriched at adult intestinal compartment boundaries. PLoS Genet 12(2):e1005822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beehler-Evans R, Micchelli CA (2015) Generation of enteroendocrine cell diversity in midgut stem cell lineages. Development 142(4):654–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ayyaz A, Li H, Jasper H (2015) Haemocytes control stem cell activity in the Drosophila intestine. Nat Cell Biol 17(6):736–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin Y, Xu J, Yin MX, Lu Y, Hu L, Li P, Zhang P, Yuan Z, Ho MS, Ji H, Zhao Y, Zhang L (2013) Brahma is essential for Drosophila intestinal stem cell proliferation and regulated by Hippo signaling. elife 2:e00999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Z, Zhang Y, Han L, Shi L, Lin X (2013) Trachea-derived dpp controls adult midgut homeostasis in Drosophila. Dev Cell 24(2):133–143

    Article  CAS  PubMed  Google Scholar 

  52. García Del Arco A, Edgar BA, Erhardt S (2018) In vivo analysis of centromeric proteins reveals a stem cell-specific asymmetry and an essential role in differentiated, non-proliferating cells. Cell Rep 22(8):1982–1993

    Article  CAS  PubMed  Google Scholar 

  53. Zhai Z, Kondo S, Ha N, Boquete JP, Brunner M, Ueda R, Lemaitre B (2015) Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis. Nat Commun 6:10219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lucchetta EM, Ohlstein B (2017) Amitosis of polyploid cells regenerates functional stem cells in the Drosophila intestine. Cell Stem Cell 20(5):609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hudry B, Khadayate S, Miguel-Aliaga I (2016) The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 530(7590):344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang J, Balachandra S, Ngo S, O'Brien LE (2017) Feedback regulation of steady-state epithelial turnover and organ size. Nature 548(7669):588–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Singh SR, Mishra MK, Kango-Singh M, Hou SX (2012) Generation and staining of intestinal stem cell lineage in adult midgut. Methods Mol Biol 879:47–69

    Article  CAS  PubMed  Google Scholar 

  58. Harrison DA, Perrimon N (1993) A simple and efficient generation of marked clones in Drosophila. Curr Biol 3:424–433

    Article  CAS  PubMed  Google Scholar 

  59. Kirilly D, Spana EP, Perrimon N, Padgett RW, Xie T (2005) BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary. Dev Cell 9:651–662

    Article  CAS  PubMed  Google Scholar 

  60. Wu JS, Luo L (2006) A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1:2583–2589

    Article  CAS  PubMed  Google Scholar 

  61. Reiff T, Jacobson J, Cognigni P, Antonello Z, Ballesta E, Tan KJ, Yew JY, Dominguez M, Miguel-Aliaga I (2015) Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. elife 4:e06930

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shree Ram Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pinto, N. et al. (2018). Markers and Methods to Study Adult Midgut Stem Cells. In: Singh, S., Rameshwar, P. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 1842. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8697-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8697-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8696-5

  • Online ISBN: 978-1-4939-8697-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics