Skip to main content

Optimized Subretinal Injection Technique for Gene Therapy Approaches

  • Protocol
Book cover Retinal Degeneration

Abstract

Gene therapy for inherited eye diseases requires local viral vector delivery by intraocular injection. Since large animal models are lacking for most of these diseases, genetically modified mouse models are commonly used in preclinical proof-of-concept studies. However, because of the relatively small mouse eye, adverse effects of the subretinal delivery procedure itself may interfere with the therapeutic outcome. The method described here aims to provide the details relevant to perform a transscleral pars plana virus-mediated gene transfer to achieve an optimized therapeutic effect in the small mouse eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger W, Kloeckener-Gruissem B, Neidhardt J (2010) The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 5:335–375

    Article  Google Scholar 

  2. den Hollander AI, Black A, Bennett J (2010) Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 120:3042–3053

    Article  Google Scholar 

  3. Day TP, Byrne LC, Schaffer DV et al (2014) Advances in AAV vector development for gene therapy in the retina. Adv Exp Med Biol 801:687–693

    Article  Google Scholar 

  4. Balakrishnan B, Jayandharan GR (2014) Basic biology of adeno-associated virus (AAV) vectors used in gene therapy. Curr Gene Ther 14(2):86–100.19

    Article  CAS  Google Scholar 

  5. Buch PK, Bainbridge JW, Ali RR (2008) AAV-mediated gene therapy for retinal disorders: from mouse to man. Gene Ther 11:849–857

    Article  Google Scholar 

  6. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248

    Article  CAS  Google Scholar 

  7. Hauswirth WW, Aleman TS, Kaushal S et al (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 10:979–990

    Article  Google Scholar 

  8. Cideciyan AV, Hauswirth WW, Aleman TS et al (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 20:999–1004

    Article  CAS  Google Scholar 

  9. Testa F, Maguire AM, Rossi S et al (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 120(6):1283–1291

    Article  Google Scholar 

  10. Russell S, Bennett J, Wellman JA et al (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390(10097):849–860

    Article  CAS  Google Scholar 

  11. MacLaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383(9923):1129–1137

    Article  CAS  Google Scholar 

  12. Michalakis S, Schön C, Becirovic E et al (2017) Gene therapy for achromatopsia. J Gene Med 19(3). https://doi.org/10.1002/jgm.2944

    Article  Google Scholar 

  13. Zhong L, Li B, Mah CS et al (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci U S A 105(22):7827–7832

    Article  CAS  Google Scholar 

  14. Petrs-Silva H, Dinculescu A, Li Q et al (2009) High-efficiency transduction of the mouse retina by tyrosin-mutant AAV serotype vectors. Mol Ther 17(3):463–471

    Article  CAS  Google Scholar 

  15. Pang JJ, Lauramore A, Deng WT et al (2008) Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: effects of serotype and site of administration. Vis Res 48(3):377–385

    Article  CAS  Google Scholar 

  16. Allocca M, Doria M, Petrillo M et al (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118(5):1955–1964

    Article  CAS  Google Scholar 

  17. Cideciyan AV, Aleman TS, Boye SL et al (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 105(39):15112–15117

    Article  CAS  Google Scholar 

  18. Lhériteau E, Libeau L, Mendes-Madeira A et al (2010) Regulation of retinal function but nonrescue of vision in RPE65-deficient dogs treated with doxycycline-regulatable AAV vectors. Mol Ther 18:1085–1093

    Article  Google Scholar 

  19. Schön C, Biel M, Michalakis S (2013) Gene replacement therapy for retinal CNG channelopathies. Mol Gen Genomics 288(10):459–467

    Article  Google Scholar 

  20. Schön C, Biel M, Michalakis S (2015) Retinal gene delivery by adeno-associated virus (AAV) vectors: strategies and applications. Eur J Pharm Biopharm 95(Pt B):343–324

    Article  Google Scholar 

  21. Palfi A, Millington-Ward S, Chadderton N et al (2010) Adeno-associated virus-mediated rhodopsin replacement provides therapeutic benefit in mice with a targeted disruption of the rhodopsin gene. Hum Gene Ther 21:311–323

    Article  CAS  Google Scholar 

  22. Surace EM, Auricchio A (2008) Versatility of AAV vectors for retinal gene transfer. Vis Res 3:353–359

    Article  Google Scholar 

  23. Janssen A, Min SH, Molday LL et al (2008) Effect of late-stage therapy on disease progression in AAV-mediated rescue of photoreceptor cells in the retinoschisin-deficient mouse. Mol Ther 16(6):1010–1017

    Article  CAS  Google Scholar 

  24. Bainbridge JW, Mistry A, Schlichtenbrede FC et al (2003) Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Ther 10:1336–1344

    Article  CAS  Google Scholar 

  25. Liang FQ, Anand V, Maguire AM et al (2001) Intraocular delivery of recombinant virus. Methods Mol Med 47:125–139

    CAS  PubMed  Google Scholar 

  26. Timmers AM, Zhang H, Squitieri A et al (2001) Subretinal injections in rodent eyes: effects on electrophysiology and histology of rat retina. Mol Vis 7:131–137

    CAS  PubMed  Google Scholar 

  27. Johnson CJ, Berglin L, Chrenek MA et al (2008) Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis 14:2211–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417

    Article  CAS  Google Scholar 

  29. Price J, Turner D, Cepko C et al (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A 84:156–160

    Article  CAS  Google Scholar 

  30. Schlichtenbrede FC, da Cruz L, Stephens C et al (2003) Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 5:757–764

    Article  CAS  Google Scholar 

  31. Michalakis S, Mühlfriedel R, Tanimoto N et al (2010) Restoration of cone vision in the CNGA3−/− mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 18(12):2057–2063

    Article  CAS  Google Scholar 

  32. Koch S, Sothilingam V, Garcia Garrido M et al (2012) Gene therapy restores vision and delays degeneration in the CNGB1(−/−) mouse model of retinitis pigmentosa. Hum Mol Genet 20:4486–4496

    Article  Google Scholar 

  33. Mühlfriedel R, Tanimoto N, Schön C et al (2017) AAV-mediated gene supplementation therapy in Achromatopsia type 2: preclinical data on therapeutic time window and long-term effects. Front Neurosci 11:292

    Article  Google Scholar 

  34. Fei Y, Hughes TE (2001) Transgenic expression of the jellyfish green fluorescent protein in the cone photoreceptors of the mouse. Vis Neurosci 4:615–623

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft (Se837/5-2, Se837/6-1, Se837/6-2, Se837/7-1 from M. W. S.) and Tistou & Charlotte Kerstan Foundation (RD-CURE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine Mühlfriedel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Mühlfriedel, R. et al. (2019). Optimized Subretinal Injection Technique for Gene Therapy Approaches. In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_26

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics