Skip to main content

Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45–55 Skipping Accompanied by Rescue of Dystrophin Expression

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach for the treatment of various genetic diseases and a therapy which has gained significant traction in recent years following FDA approval of new antisense-based drugs. Exon skipping for Duchenne muscular dystrophy (DMD) works by modulating dystrophin pre-mRNA splicing, preventing incorporation of frame-disrupting exons into the final mRNA product while maintaining the open reading frame, to produce a shortened-yet-functional protein as seen in milder Becker muscular dystrophy (BMD) patients. Exons 45–55 skipping in dystrophin is potentially applicable to approximately 47% of DMD patients because many mutations occur within this “mutation hotspot.” In addition, patients naturally harboring a dystrophin exons 45–55 in-frame deletion mutation have an asymptomatic or exceptionally mild phenotype compared to shorter in-frame deletion mutations in this region. As such, exons 45–55 skipping could transform the DMD phenotype into an asymptomatic or very mild BMD phenotype and rescue nearly a half of DMD patients. In addition, this strategy is potentially applicable to some BMD patients as well, who have in-frame deletion mutations in this region. As the degree of exon skipping correlates with therapeutic outcomes, reliable measurements of exon skipping efficiencies are essential to the development of novel antisense-mediated exon skipping therapeutics. In the case of DMD, researchers have often relied upon human muscle fibers obtained from muscle biopsies for testing; however, this method is highly invasive and patient myofibers can display limited proliferative ability. To overcome these challenges, researchers can generate myofibers from patient fibroblast cells by transducing the cells with a viral vector containing MyoD, a myogenic regulatory factor. Here, we describe a methodology for assessing dystrophin exons 45–55 multiple skipping efficiency using antisense oligonucleotides in human muscle cells derived from DMD patient fibroblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aartsma-Rus A, Krieg AM (2017) FDA approves eteplirsen for duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther 27(1):1–3. https://doi.org/10.1089/nat.2016.0657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25(5):1069–1075. https://doi.org/10.1016/j.ymthe.2017.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Finkel RS, Chiriboga CA, Vajsar J et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388(10063):3017–3026. https://doi.org/10.1016/S0140-6736(16)31408-8

    Article  CAS  PubMed  Google Scholar 

  4. Finkel RS, Mercuri E, Darras BT et al (2017) Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 377(18):1723–1732. https://doi.org/10.1056/NEJMoa1702752

    Article  CAS  PubMed  Google Scholar 

  5. Gragoudas ES, Adamis AP, Cunningham ET Jr et al (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351(27):2805–2816. https://doi.org/10.1056/NEJMoa042760

    Article  CAS  PubMed  Google Scholar 

  6. Raal FJ, Santos RD, Blom DJ et al (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375(9719):998–1006. https://doi.org/10.1016/S0140-6736(10)60284-X

    Article  CAS  PubMed  Google Scholar 

  7. Stein C, Castanotto D, Krishnan A et al (2016) Defibrotide (Defitelio): a new addition to the stockpile of food and drug administration-approved oligonucleotide drugs. Mol Ther Nucleic Acids 5:e346. https://doi.org/10.1038/mtna.2016.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee JJ, Yokota T (2013) Antisense therapy in neurology. J Pers Med 3(3):144–176. https://doi.org/10.3390/jpm3030144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545. https://doi.org/10.2147/DDDT.S97635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen Q, Yokota T (2017) Immortalized muscle cell model to test the exon skipping efficacy for Duchenne muscular dystrophy. J Pers Med 7(4). https://doi.org/10.3390/jpm7040013

    Article  PubMed Central  Google Scholar 

  11. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928

    Article  CAS  PubMed  Google Scholar 

  12. Goemans NM, Tulinius M, van den Akker JT et al (2011) Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med 364(16):1513–1522. https://doi.org/10.1056/NEJMoa1011367

    Article  CAS  PubMed  Google Scholar 

  13. Lu QL, Cirak S, Partridge T (2014) What can we learn from clinical trials of exon skipping for DMD? Mol Ther Nucleic Acids 3:e152. https://doi.org/10.1038/mtna.2014.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kesselheim AS, Avorn J (2016) Approving a problematic muscular dystrophy drug: implications for FDA policy. JAMA 316(22):2357–2358. https://doi.org/10.1001/jama.2016.16437

    Article  PubMed  Google Scholar 

  15. Nakamura A, Shiba N, Miyazaki D et al (2017) Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J Hum Genet 62(4):459–463. https://doi.org/10.1038/jhg.2016.152

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura A, Yoshida K, Fukushima K et al (2008) Follow-up of three patients with a large in-frame deletion of exons 45-55 in the Duchenne muscular dystrophy (DMD) gene. J Clin Neurosci 15(7):757–763. https://doi.org/10.1016/j.jocn.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  17. Taglia A, Petillo R, D'Ambrosio P et al (2015) Clinical features of patients with dystrophinopathy sharing the 45-55 exon deletion of DMD gene. Acta Myol 34(1):9–13

    PubMed  PubMed Central  Google Scholar 

  18. Aslesh T, Maruyama R, Yokota T (2018) Skipping multiple exons to treat DMD—promises and challenges. Biomedicine 6(1):1

    Google Scholar 

  19. Anthony K, Feng L, Arechavala-Gomeza V et al (2012) Exon skipping quantification by quantitative reverse-transcription polymerase chain reaction in Duchenne muscular dystrophy patients treated with the antisense oligomer eteplirsen. Hum Gene Ther Methods 23(5):336–345. https://doi.org/10.1089/hgtb.2012.117

    Article  CAS  PubMed  Google Scholar 

  20. Verheul RC, van Deutekom JC, Datson NA (2016) Digital droplet PCR for the absolute quantification of exon skipping induced by antisense oligonucleotides in (pre-)clinical development for Duchenne muscular dystrophy. PLoS One 11(9):e0162467. https://doi.org/10.1371/journal.pone.0162467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anthony K, Arechavala-Gomeza V, Taylor LE et al (2014) Dystrophin quantification: biological and translational research implications. Neurology 83(22):2062–2069. https://doi.org/10.1212/WNL.0000000000001025

    Article  PubMed  PubMed Central  Google Scholar 

  22. Joyce NC, Oskarsson B, Jin LW (2012) Muscle biopsy evaluation in neuromuscular disorders. Phys Med Rehabil Clin N Am 23(3):609–631. https://doi.org/10.1016/j.pmr.2012.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  23. Paasuke R, Eimre M, Piirsoo A et al (2016) Proliferation of human primary myoblasts is associated with altered energy metabolism in dependence on ageing in vivo and in vitro. Oxidative Med Cell Longev 2016:8296150. https://doi.org/10.1155/2016/8296150

    Article  CAS  Google Scholar 

  24. Lalic T, Vossen RH, Coffa J et al (2005) Deletion and duplication screening in the DMD gene using MLPA. Eur J Hum Genet 13(11):1231–1234. https://doi.org/10.1038/sj.ejhg.5201465

    Article  CAS  PubMed  Google Scholar 

  25. Muntoni F (2001) Is a muscle biopsy in Duchenne dystrophy really necessary? Neurology 57(4):574–575

    Article  CAS  PubMed  Google Scholar 

  26. Bushby K, Finkel R, Birnkrant DJ et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9(1):77–93. https://doi.org/10.1016/S1474-4422(09)70271-6

    Article  PubMed  Google Scholar 

  27. Liu Z, Fan H, Li Y et al (2008) Experimental studies on the differentiation of fibroblasts into myoblasts induced by MyoD genes in vitro. Int J Biomed Sci 4(1):14–19

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51(6):987–1000

    Article  CAS  PubMed  Google Scholar 

  29. Saito T, Nakamura A, Aoki Y et al (2010) Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient. PLoS One 5(8):e12239. https://doi.org/10.1371/journal.pone.0012239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Echigoya Y, Duddy W, Lee J et al Exons 45–55 skipping of human dystrophin transcripts using cocktail antisense oligonucleotides. In: Molecular therapy, 2014. Nature publishing group 75 varick st, 9th flr, New York, NY 10013-1917, USA, pp S41–S42

    Google Scholar 

  31. Shimo T, Maruyama R, Yokota T (2018) Designing effective antisense oligonucleotides for exon skipping. Methods Mol Biol 1687:143–155. https://doi.org/10.1007/978-1-4939-7374-3_10

    Article  CAS  PubMed  Google Scholar 

  32. Lee J, Echigoya Y, Duddy W et al (2018) Antisense PMO cocktails effectively skip dystrophin exons 45-55 in myotubes transdifferentiated from DMD patient fibroblasts. PLOS ONE 13 (5):e0197084

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Alberta Faculty of Medicine and Dentistry, Parent Project Muscular Dystrophy USA, Canadian Institutes of Health Research (grants FRN134134 and 132574), Friends of Garrett Cumming Research Funds, HM Toupin Neurological Science Research Funds, Muscular Dystrophy Canada, Canada Foundation for Innovation (grant 30819), Alberta Enterprise and Advanced Education, Women and Children’s Health Research Institute, Association Française contre les Myopathies, Alberta Innovates—Health Solutions, NIH (grants 5U54HD053177, K26OD011171, and P50AR060836-01), US Department of Defense (grants W81XWH-05-1-0616 and W81XWH-11-1-0782), and NIH NIAMS (training grant 5T32AR056993).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, J.J.A., Saito, T., Duddy, W., Takeda, S., Yokota, T. (2018). Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45–55 Skipping Accompanied by Rescue of Dystrophin Expression. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics