Skip to main content

Gene Delivery of Alpha-1-Antitrypsin Using Recombinant Adeno-Associated Virus (rAAV)

  • Protocol
  • First Online:
Serpins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1826))

Abstract

The challenge for alpha-1-antitrypsin (AAT also known as SERPINA1) gene therapy is to achieve long term and high levels of AAT production. Recombinant adeno-associated virus (rAAV) vector has several advantages for AAT gene delivery including no viral genes in the vector, no requirement of integration for long-term transgene expression, low immunogenicity, and wide tropism. AAV-mediated AAT gene therapy has been developed and tested in animal models for AAT deficiency, type 1 diabetes, rheumatoid arthritis, and osteoporosis. AAV-mediated AAT gene therapy has also been tested in clinical studies and has shown promising results. Here we describe the methods of rAAV-AAT vector construction and production as well as AAT gene delivery through (1) liver-directed, (2) muscle-directed, and (3) mesenchymal stem cell (MSC)-mediated routes. We will also describe methods for the evaluation of AAT expression for each delivery approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song S, Morgan M, Ellis T et al (1998) Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci U S A 95:14384–14388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song S, Goudy K, Campbell-Thompson M et al (2004) Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I diabetes in NOD mice. Gene Ther 11:181–186

    Article  CAS  PubMed  Google Scholar 

  3. Lu Y, Tang M, Wasserfall C et al (2006) Alpha1-antitrypsin gene therapy modulates cellular immunity and efficiently prevents type 1 diabetes in nonobese diabetic mice. Hum Gene Ther 17:625–634

    Article  CAS  PubMed  Google Scholar 

  4. Grimstein C, Choi YK, Wasserfall CH et al (2011) Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model. J Transl Med 9:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grimstein C, Choi YK, Satoh M et al (2010) Combination of alpha-1 antitrypsin and doxycycline suppresses collagen-induced arthritis. J Gene Med 12:35–44

    Article  CAS  PubMed  Google Scholar 

  6. Akbar MA, Cao JJ, Lu Y et al (2016) Alpha-1 antitrypsin gene therapy ameliorates bone loss in ovariectomy-induced osteoporosis mouse model. Hum Gene Ther 27:679–686

    Article  CAS  PubMed  Google Scholar 

  7. Akbar MA, Lu Y, Elshikha AS et al (2017) Transplantation of adipose tissue-derived Mesenchymal stem cell (ATMSC) expressing Alpha-1 antitrypsin reduces bone loss in ovariectomized osteoporosis mice. Hum Gene Ther 28:179–189

    Article  CAS  PubMed  Google Scholar 

  8. Xu L, Daly T, Gao C et al (2001) CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum Gene Ther 12:563–573

    Article  CAS  PubMed  Google Scholar 

  9. Conlon TJ, Cossette T, Erger K et al (2005) Efficient hepatic delivery and expression from a recombinant adeno-associated virus 8 pseudotyped alpha1-antitrypsin vector. Mol Ther 12:867–875

    Article  CAS  PubMed  Google Scholar 

  10. Mueller C, Tang Q, Gruntman A et al (2012) Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol Ther 20:590–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song S, Embury J, Laipis PJ, Berns KI, Crawford JM, Flotte TR (2001) Stable therapeutic serum levels of human alpha-1 antitrypsin (AAT) after portal vein injection of recombinant adeno-associated virus (rAAV) vectors. Gene Ther 8:1299–1306

    Article  CAS  PubMed  Google Scholar 

  12. Nakai H, Thomas CE, Storm TA et al (2002) A limited number of transducible hepatocytes restricts a wide-range linear vector dose response in recombinant adeno-associated virus-mediated liver transduction. J Virol 76:11343–11349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benatti FB, Pedersen BK (2015) Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol 11:86–97

    Article  CAS  PubMed  Google Scholar 

  14. Duan D, Sharma P, Yang J et al (1998) Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 72:8568–8577

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Song S, Laipis PJ, Berns KI, Flotte TR (2001) Effect of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc Natl Acad Sci U S A 98:4084–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu Y, Choi YK, Campbell-Thompson M et al (2006) Therapeutic level of functional human alpha 1 antitrypsin (hAAT) secreted from murine muscle transduced by adeno-associated virus (rAAV1) vector. J Gene Med 8:730–735

    Article  CAS  PubMed  Google Scholar 

  17. Brantly ML, Chulay JD, Wang L et al (2009) Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci U S A 106:16363–16368

    Article  PubMed  PubMed Central  Google Scholar 

  18. Flotte TR, Trapnell BC, Humphries M et al (2011) Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing alpha1-antitrypsin: interim results. Hum Gene Ther 22:1239–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mueller C, Gernoux G, Gruntman AM et al (2017) 5 year expression and neutrophil defect repair after gene therapy in Alpha-1 antitrypsin deficiency. Mol Ther 25:1387–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mueller C, Flotte TR (2013) Gene-based therapy for alpha-1 antitrypsin deficiency. COPD 10(Suppl 1):44–49

    Article  PubMed  Google Scholar 

  21. Song S, Witek RP, Lu Y et al (2004) Ex vivo transduced liver progenitor cells as a platform for gene therapy in mice. Hepatology 40:918–924

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Lu Y, Witek RP et al (2010) Ex vivo transduction and transplantation of bone marrow cells for liver gene delivery of alpha1-antitrypsin. Mol Ther 18:1553–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li H, Zhang B, Lu Y, Jorgensen M, Petersen B, Song S (2011) Adipose tissue-derived mesenchymal stem cell-based liver gene delivery. J Hepatol 54:930–938

    Article  CAS  PubMed  Google Scholar 

  24. Chen MJ, Lu Y, Simpson NE et al (2015) In situ transplantation of alginate bioencapsulated adipose tissues derived stem cells (ADSCs) via hepatic injection in a mouse model. PLoS One 10:e0138184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Witek RP, Fisher SH, Petersen BE (2005) Monocrotaline, an alternative to retrorsine-based hepatocyte transplantation in rodents. Cell Transplant 14:41–47

    Article  PubMed  Google Scholar 

  26. Song S, Lu Y, Choi YK et al (2004) DNA-dependent PK inhibits adeno-associated virus DNA integration. Proc Natl Acad Sci U S A 101:2112–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihong Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Song, S., Lu, Y. (2018). Gene Delivery of Alpha-1-Antitrypsin Using Recombinant Adeno-Associated Virus (rAAV). In: Lucas, A. (eds) Serpins. Methods in Molecular Biology, vol 1826. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8645-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8645-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8644-6

  • Online ISBN: 978-1-4939-8645-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics