Skip to main content

Interplay Between Long Noncoding RNAs and MicroRNAs in Cancer

  • Protocol
  • First Online:
Computational Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1819))

Abstract

In the last decade noncoding RNAs (ncRNAs) have been extensively studied in several biological processes and human diseases including cancer. microRNAs (miRNAs) are the best-known class of ncRNAs. miRNAs are small ncRNAs of around 20–22 nucleotides (nt) and are crucial posttranscriptional regulators of protein coding genes. Recently, new classes of ncRNAs, longer than miRNAs have been discovered. Those include intergenic noncoding RNAs (lincRNAs) and circular RNAs (circRNAs). These novel types of ncRNAs opened a very exciting field in biology, leading researchers to discover new relationships between miRNAs and long noncoding RNAs (lncRNAs), which act together to control protein coding gene expression. One of these new discoveries led to the formulation of the “competing endogenous RNA (ceRNA) hypothesis.” This hypothesis suggests that an lncRNA acts as a sponge for miRNAs reducing their expression and causing the upregulation of miRNA targets. In this chapter we first discuss some recent discoveries in this field showing the mutual regulation of miRNAs, lncRNAs, and protein-coding genes in cancer. We then discuss the general approaches for the study of ceRNAs and present in more detail a recent computational approach to explore the ability of lncRNAs to act as ceRNAs in human breast cancer that has been shown to be, among the others, the most precise and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  Google Scholar 

  2. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  CAS  Google Scholar 

  3. Calin GA et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  CAS  Google Scholar 

  4. Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949

    Article  CAS  Google Scholar 

  5. Calin GA et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171

    Article  CAS  Google Scholar 

  6. Hayashita Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632

    Article  CAS  Google Scholar 

  7. Mavrakis KJ et al (2010) Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 12(4):372–379

    Article  CAS  Google Scholar 

  8. Iden M et al (2016) The lncRNA PVT1 contributes to the cervical cancer phenotype and associates with poor patient prognosis. PLoS One 11(5):e0156274

    Article  Google Scholar 

  9. Liu F-T et al (2016) Long noncoding RNA ANRIL: a potential novel prognostic marker in cancer A meta-analysis. Minerva Med 107(2):77–83

    PubMed  Google Scholar 

  10. Tseng Y-Y et al (2014) PVT1 dependence in cancer with MYC copy-number increase. Nature 512:82

    Article  CAS  Google Scholar 

  11. Tseng YY, Bagchi A (2015) The PVT1-MYC duet in cancer. Mol Cell Oncol 2(2):e974467

    Article  Google Scholar 

  12. Liu Y et al (2012) A genetic variant in long non-coding RNA HULC contributes to risk of HBV-related hepatocellular carcinoma in a Chinese population. PLoS One 7(4):e35145

    Article  CAS  Google Scholar 

  13. Salmena L et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  Google Scholar 

  14. Ergun S, Oztuzcu S (2015) Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways. Tumor Biol 36(5):3129–3136

    Article  CAS  Google Scholar 

  15. Qi X et al (2015) ceRNA in cancer: possible functions and clinical implications. J Med Genet 52(10):710–718

    Article  Google Scholar 

  16. Guo L-L et al (2015) Competing endogenous RNA networks and gastric cancer. World J Gastroenterol 21(41):11680–11687

    Article  CAS  Google Scholar 

  17. Yang C et al (2016) Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives. Oncotarget 7(12):13479–13490

    Article  Google Scholar 

  18. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283

    Article  CAS  Google Scholar 

  19. Wang J et al (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38(16):5366–5383

    Article  CAS  Google Scholar 

  20. Poliseno L, Pandolfi PP (2015) PTEN ceRNA networks in human cancer. Methods 77:41–50

    Article  Google Scholar 

  21. Fan M et al (2013) A long non-coding RNA, PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer cells. Exp Ther Med 5(4):1143–1146

    Article  Google Scholar 

  22. Poliseno L et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038

    Article  CAS  Google Scholar 

  23. Franco-Zorrilla JE et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037

    Article  CAS  Google Scholar 

  24. Sarver AL, Subramanian S (2012) Competing endogenous RNA database. Bioinformation 8(15):731–733

    Article  Google Scholar 

  25. Li J-H et al (2014) starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein--RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92

    Article  CAS  Google Scholar 

  26. Das S et al (2014) ln Ce DB: database of human long noncoding RNA acting as competing endogenous RNA. PLoS One 9(6):e98965

    Article  Google Scholar 

  27. Wang P et al (2015) MiRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs. Database 2015:pii: bav098

    Article  Google Scholar 

  28. Paci P, Colombo T, Farina L (2014) Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 8:83

    Article  Google Scholar 

  29. Mangiavacchi A et al (2016) The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA. Oncotarget 7:60155

    Article  Google Scholar 

  30. Matouk IJ et al (2015) The non-coding RNAs of the H19-IGF2 imprinted loci: a focus on biological roles and therapeutic potential in lung cancer. J Transl Med 13:113

    Article  Google Scholar 

  31. Harrow J et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22(9):1760–1774

    Article  CAS  Google Scholar 

  32. Seitz H et al (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14(9):1741–1748

    Article  CAS  Google Scholar 

  33. Fiscon G, Iannello G, Paci P (2016) A perspective on the algorithms predicting and evaluating the RNA secondary structure. J Genet Genome Res 3:023

    Article  Google Scholar 

  34. Zheng L et al (2015) The 3′ UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res Treat 150(1):105–118

    Article  CAS  Google Scholar 

  35. Cesana M et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369

    Article  CAS  Google Scholar 

  36. Wang Y et al (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25(1):69–80

    Article  CAS  Google Scholar 

  37. Kallen AN et al (2013) The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 52(1):101–112

    Article  CAS  Google Scholar 

  38. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453

    Article  CAS  Google Scholar 

  39. Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  Google Scholar 

  40. Rybak-Wolf A et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  Google Scholar 

  41. Memczak S et al (2015) Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 10(10):e0141214

    Article  Google Scholar 

  42. Capel B et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030

    Article  CAS  Google Scholar 

  43. Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  Google Scholar 

  44. Hansen TB (2013) J.o. Kjems, rgen, and C.K. Damgaard, Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609–5612

    Article  CAS  Google Scholar 

  45. Li F et al (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget 6(8):6001–6013

    PubMed  PubMed Central  Google Scholar 

  46. Ule J et al (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37(4):376–386

    Article  CAS  Google Scholar 

  47. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  Google Scholar 

  48. Jeggari A, Marks DS, Larsson E (2012) miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28(15):2062–2063

    Article  CAS  Google Scholar 

  49. Wang P et al (2015) Identification of lncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res 43(7):3478–3489

    Article  CAS  Google Scholar 

  50. Ghosal S et al (2014) HumanViCe: host ceRNA network in virus infected cells in human. Front Genet 5:249

    Article  Google Scholar 

  51. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697

    Article  CAS  Google Scholar 

  52. Paraskevopoulou MD et al (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173

    Article  Google Scholar 

  53. Betel D et al (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90

    Article  Google Scholar 

  54. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  Google Scholar 

  55. Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    Article  CAS  Google Scholar 

  56. Chou CH et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247

    Article  CAS  Google Scholar 

  57. Le TD et al (2017) Computational methods for identifying miRNA sponge interactions. Brief Bioinform 18:577

    PubMed  Google Scholar 

  58. Zhou X, Liu J, Wang W (2014) Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data. IET Syst Biol 8(3):96–103

    Article  Google Scholar 

  59. Xu J et al (2015) The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res 43(17):8169–8182

    Article  CAS  Google Scholar 

  60. Shao T et al (2015) Identification of module biomarkers from the dysregulated ceRNA-ceRNA interaction network in lung adenocarcinoma. Mol Biosyst 11(11):3048–3058

    Article  CAS  Google Scholar 

  61. Chiu H-S et al (2015) Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res 25(2):257–267

    Article  CAS  Google Scholar 

  62. Chiu Y-C et al (2015) Parameter optimization for constructing competing endogenous RNA regulatory network in glioblastoma multiforme and other cancers. BMC Genomics 16(4):1

    Article  CAS  Google Scholar 

  63. Han JD et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93

    Article  CAS  Google Scholar 

  64. Sumazin P et al (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147(2):370–381

    Article  CAS  Google Scholar 

  65. Network CGAR et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45(10):1113–1120

    Article  Google Scholar 

  66. Tomczak K et al (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19(1A):A68–A77

    Google Scholar 

  67. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9(10):770–780

    Article  CAS  Google Scholar 

  68. Figliuzzi M, Marinari E, De Martino A (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104(5):1203–1213

    Article  CAS  Google Scholar 

  69. Ala U et al (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci 110(18):7154–7159

    Article  CAS  Google Scholar 

  70. Bosia C, Pagnani A, Zecchina R (2013) Modelling competing endogenous RNA networks. PLoS One 8(6):e66609

    Article  CAS  Google Scholar 

  71. Yuan Y et al (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc Natl Acad Sci 112(10):3158–3163

    Article  CAS  Google Scholar 

  72. Grillo G et al (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38(suppl 1):D75–D80

    Article  CAS  Google Scholar 

  73. Kinsella RJ et al (2011) Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011:bar030

    Article  Google Scholar 

  74. Cui D et al (2016) Long non-coding RNA PVT1 as a novel biomarker for diagnosis and prognosis of non-small cell lung cancer. Tumor Biol 37(3):4127–4134

    Article  CAS  Google Scholar 

  75. Asselin-Labat ML et al (2011) Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14. Mol Cell Biol 31(22):4609–4622

    Article  CAS  Google Scholar 

  76. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040

    Article  CAS  Google Scholar 

  77. Conte F et al (2017) Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS One 12(2):e0171661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Russo, F., Fiscon, G., Conte, F., Rizzo, M., Paci, P., Pellegrini, M. (2018). Interplay Between Long Noncoding RNAs and MicroRNAs in Cancer. In: von Stechow, L., Santos Delgado, A. (eds) Computational Cell Biology. Methods in Molecular Biology, vol 1819. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8618-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8618-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8617-0

  • Online ISBN: 978-1-4939-8618-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics