Skip to main content

Cardiopulmonary Exercise Testing

  • Protocol
  • First Online:
Investigations of Early Nutrition Effects on Long-Term Health

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

Cardiopulmonary exercise testing (CPET) is an objective assessment of exercise capacity. It has become increasingly popular in clinical, research, and athletic performance settings. CPET allows for investigation of the cardiovascular, pulmonary, and skeletal muscle systems during exercise-induced stress. The main variable of maximal oxygen uptake (VO2max) reflects the gold standard measure of exercise capacity. This chapter will describe the method of performing a graded maximal CPET with the Vmax 229 Cardiopulmonary Exercise Testing Instrument and CardioSoft program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albouaini K, Egred M, Alahmar A, Wright DJ (2007) Cardiopulmonary exercise testing and its application. Postgrad Med J 83(985):675–682

    Article  PubMed  PubMed Central  Google Scholar 

  2. American Thoracic Society; American College of Chest Physicians (2003) ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167(2):211–277

    Article  Google Scholar 

  3. Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun X-G et al(2011) Principles of exercise testing and interpretation: including pathophysiology and clinical applications, 5th Revised edn. Lippincott Williams and Wilkins (Philadelphia, PA); . ISBN-10: 1609138996

    Google Scholar 

  4. Wasserman K, Whipp BJ (1975) Exercise physiology in health and disease. Am Rev Respir Dis 112(2):219–249

    CAS  PubMed  Google Scholar 

  5. Stelken AM, Younis LT, Jennison SH, Douglas Miller D, Miller LW, Shaw LJ et al (1996) Prognostic value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol 27(2):345–352

    Article  CAS  PubMed  Google Scholar 

  6. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M et al (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301(19):2024–2035

    Article  CAS  PubMed  Google Scholar 

  7. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF et al (2010) Clinician's guide to cardiopulmonary exercise testing in adults: a scientific statement from the American heart association. Circulation 122(2):191–225

    Article  PubMed  Google Scholar 

  8. Stickland MK, Butcher SJ, Marciniuk DD, Bhutani M (2012) Assessing exercise limitation using cardiopulmonary exercise testing. Pulm Med 2012:824091. https://doi.org/10.1155/2012/824091

    Article  PubMed  PubMed Central  Google Scholar 

  9. Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ (2003) The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol 95(5):1901–1907

    Article  CAS  PubMed  Google Scholar 

  10. Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N (1985) Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis 131(5):700–708

    CAS  PubMed  Google Scholar 

  11. Hansen JE, Sue DY, Wasserman K (1984) Predicted values for clinical exercise testing. Am Rev Respir Dis 129(2P2):S49–S55. https://doi.org/10.1164/arrd.1984.129.2P2.S49

    Article  CAS  PubMed  Google Scholar 

  12. Brubaker PH, Kitzman DW (2011) Chronotropic incompetence. causes, consequences, and management. Circulation 123(9):1010–1020

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vella CA, Robergs RA (2005) A review of the stroke volume response to upright exercise in healthy subjects. Br J Sports Med 39(4):190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith DL, Fernhall B (2011) Advanced cardiovascular exercise physiology. Human Kinetics Ltd, Champaign, IL. 1 Feb. 2011. ISBN-10: 0736073922

    Google Scholar 

  15. Holverda S, Gan CT, Marcus JT, Postmus PE, Boonstra A, Vonk-Noordegraaf A (2006) Impaired stroke volume response to exercise in pulmonary arterial hypertension. J Am Coll Cardiol 47(8):1732–1733

    Article  PubMed  Google Scholar 

  16. Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H et al (1994) Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol 24(6):1529–1535

    Article  CAS  PubMed  Google Scholar 

  17. Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ et al (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Phys 256(1):H132–H141

    CAS  Google Scholar 

  18. Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341(18):1351–1357

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe J, Thamilarasan M, Blackstone EH, Thomas JD, Lauer MS (2001) Heart rate recovery immediately after treadmill exercise and left ventricular systolic dysfunction as predictors of mortality. the case of stress echocardiography. Circulation 104(16):1911–1916

    CAS  PubMed  Google Scholar 

  20. Vivekananthan DP, Blackstone EH, Pothier CE, Lauer MS (2003) Heart rate recovery after exercise is apredictor of mortality, independent of the angiographic severity of coronary disease. J Am Coll Cardiol 42(5):831–838

    Article  PubMed  Google Scholar 

  21. Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287(3):R502–R516. https://doi.org/10.1152/ajpregu.00114.2004

    Article  CAS  PubMed  Google Scholar 

  22. Baker JS, McCormick MC, Robergs RA (2010) Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab 2010:905612. https://doi.org/10.1155/2010/905612

    Article  PubMed  PubMed Central  Google Scholar 

  23. Milani RV, Lavie CJ, Mehra MR, Ventura HO (2006) Understanding the basics of cardiopulmonary exercise testing. Mayo Clin Proc 81(12):1603–1611

    Article  PubMed  Google Scholar 

  24. Brooks GA (1998) Mammalian fuel utilization during sustained exercise. Mammalian fuel utilization during sustained exercise. Comp Biochem Physiol B Biochem Mol Biol 120(1):89–107

    Article  CAS  PubMed  Google Scholar 

  25. Sun X-G, Hansen JE, Garatachea N, Storer TW, Wasserman K (2002) Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med 166(11):1443–1448

    Article  PubMed  Google Scholar 

  26. Tumminello G, Guazzi M, Lancellotti P, Piérard LA (2007) Exercise ventilation inefficiency in heart failure: pathophysiological and clinical significance. Eur Heart J 28(6):673–678

    Article  PubMed  Google Scholar 

  27. Coats AJS (2005) Why ventilatory inefficiency matters in chronic heart failure. Eur Heart J 26(5):426–427

    Article  PubMed  Google Scholar 

  28. Voelkel NF, Schranz D (2015) The right ventricle in health and disease (respiratory medicine). Humana, New York. (Springer; New York, NY, USA); 2015 edition (29 Oct. 2014). ASIN: B00S15C7R0.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tran, D. (2018). Cardiopulmonary Exercise Testing. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics