Skip to main content
Book cover

Chaperones pp 397–422Cite as

Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kim YE et al (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  2. Neckers L, Mollapour M, Tsutsumi S (2009) The complex dance of the molecular chaperone Hsp90. Trends Biochem Sci 34(5):223–226

    Article  CAS  PubMed  Google Scholar 

  3. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283(27):18473–18477

    Article  CAS  PubMed  Google Scholar 

  4. Dollins DE et al (2007) Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell 28(1):41–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Southworth DR, Agard DA (2008) Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol Cell 32(5):631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mayer MP, Le Breton L (2015) Hsp90: breaking the symmetry. Mol Cell 58(1):8–20

    Article  CAS  PubMed  Google Scholar 

  7. Verba KA et al (2016) Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352(6293):1542–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lorenz OR et al (2014) Modulation of the hsp90 chaperone cycle by a stringent client protein. Mol Cell 53(6):941–953

    Article  CAS  PubMed  Google Scholar 

  9. Retzlaff M et al (2010) Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol Cell 37(3):344–354

    Article  CAS  PubMed  Google Scholar 

  10. Karagoz GE et al (2014) Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 156(5):963–974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Smith DF (1993) Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol 7:1418–1429

    CAS  PubMed  Google Scholar 

  12. Kirschke E et al (2014) Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 157(7):1685–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wegele H et al (2006) Substrate transfer from the chaperone Hsp70 to Hsp90. J Mol Biol 356(3):802–811

    Article  CAS  PubMed  Google Scholar 

  14. Genest O et al (2011) Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc Natl Acad Sci U S A 107:8206–8211

    Article  Google Scholar 

  15. Melnick J, Dul JL, Argon Y (1994) Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370(6488):373–375

    Article  CAS  PubMed  Google Scholar 

  16. Liu B et al (2010) Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 1:79

    Article  PubMed  CAS  Google Scholar 

  17. Rosenbaum M et al (2014) MZB1 is a GRP94 cochaperone that enables proper immunoglobulin heavy chain biosynthesis upon ER stress. Genes Dev 28(11):1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theodoraki MA, Caplan AJ (2012) Quality control and fate determination of Hsp90 client proteins. Biochim Biophys Acta 1823(3):683–688

    Article  CAS  PubMed  Google Scholar 

  19. Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A 90:7074–7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Picard D et al (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348:166–168

    Article  CAS  PubMed  Google Scholar 

  21. Pearl LH, Prodromou C (2006) Structure and mechanism of the hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  PubMed  Google Scholar 

  22. Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophys Acta 1823(3):674–682

    Article  CAS  PubMed  Google Scholar 

  23. Zhao R, Houry WA (2007) Molecular interaction network of the Hsp90 chaperone system. Adv Exp Med Biol 594:27–36

    Article  PubMed  Google Scholar 

  24. Franzosa EA et al (2011) Heterozygous yeast deletion collection screens reveal essential targets of Hsp90. PLoS One 6(11):e28211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McClellan AJ et al (2007) Diverse cellular functions of the hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121–135

    Article  CAS  PubMed  Google Scholar 

  26. Gopinath RK et al (2014) The Hsp90-dependent proteome is conserved and enriched for hub proteins with high levels of protein-protein connectivity. Genome Biol Evol 6(10):2851–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Millson SH et al (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4(5):849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Diezmann S, Leach MD, Cowen LE (2015) Functional divergence of Hsp90 genetic interactions in biofilm and planktonic cellular states. PLoS One 10(9):e0137947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Diezmann S et al (2012) Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry. PLoS Genet 8(3):e1002562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu Z, Moghaddas Gholami A, Kuster B (2012) Systematic identification of the HSP90 candidate regulated proteome. Mol Cell Proteomics 11(6):M111 016675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Taipale M et al (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150(5):987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taipale M et al (2014) A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158(2):434–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Echtenkamp FJ et al (2016) Hsp90 and p23 molecular chaperones control chromatin architecture by maintaining the functional pool of the RSC chromatin remodeler. Mol Cell 64(5):888–899

    Article  CAS  PubMed  Google Scholar 

  34. Zhao R et al (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 180(3):563–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holt SE et al (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13(7):817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghosh A, Chawla-Sarkar M, Stuehr DJ (2011) Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process. FASEB J 25(6):2049–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iwasaki S et al (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39(2):292–299

    Article  CAS  PubMed  Google Scholar 

  38. Lisanti S et al (2014) Deletion of the mitochondrial chaperone TRAP-1 uncovers global reprogramming of metabolic networks. Cell Rep 8(3):671–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoshida S et al (2013) Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc Natl Acad Sci U S A 110(17):E1604–E1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ostrovsky O, Ahmed NT, Argon Y (2009) The chaperone activity of GRP94 toward insulin-like growth factor II is necessary for the stress response to serum deprivation. Mol Biol Cell 20(6):1855–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu B et al (2013) Essential roles of grp94 in gut homeostasis via chaperoning canonical Wnt pathway. Proc Natl Acad Sci U S A 110(17):6877–6882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Motojima-Miyazaki Y, Yoshida M, Motojima F (2010) Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity. Biochem Biophys Res Commun 400(2):241–245

    Article  CAS  PubMed  Google Scholar 

  43. Sato T et al (2010) HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Mol Microbiol 76(3):576–589

    Article  CAS  PubMed  Google Scholar 

  44. Saito M et al (2008) Interaction of the molecular chaperone HtpG with uroporphyrinogen decarboxylase in the cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem 72(5):1394–1397

    Article  CAS  PubMed  Google Scholar 

  45. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228(2):111–133

    Article  CAS  Google Scholar 

  46. Genest O et al (2013) Uncovering a region of heat shock protein 90 important for client binding in E coli and chaperone function in yeast. Mol Cell 49(3):464–473

    Article  CAS  PubMed  Google Scholar 

  47. Vaughan CK et al (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23(5):697–707

    Article  CAS  PubMed  Google Scholar 

  48. Karagoz GE, Rudiger SG (2015) Hsp90 interaction with clients. Trends Biochem Sci 40(2):117–125

    Article  CAS  PubMed  Google Scholar 

  49. Street TO et al (2014) Elucidating the mechanism of substrate recognition by the bacterial Hsp90 molecular chaperone. J Mol Biol 426(12):2393–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stepanova L et al (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10:1491–1502

    Article  CAS  PubMed  Google Scholar 

  51. Smith DF, Faber LE, Toft DO (1990) Purification of unactivated progesterone receptor and identification of novel receptor-associated proteins. J Biol Chem 265(7):3996–4003

    CAS  PubMed  Google Scholar 

  52. Riggs D et al (2004) Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 39(5–6):279–295

    Article  CAS  PubMed  Google Scholar 

  53. Echeverria PC et al (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6(10):e26044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410(3):439–453

    Article  CAS  PubMed  Google Scholar 

  55. Harst A, Lin H, Obermann WM (2005) Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem J 387(Pt 3):789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Siligardi G et al (2004) Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 279(50):51989–51998

    Article  CAS  PubMed  Google Scholar 

  57. Johnson JL, Toft DO (1995) Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol 9(6):670–678

    CAS  PubMed  Google Scholar 

  58. McLaughlin SH et al (2006) The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 356(3):746–758

    Article  CAS  PubMed  Google Scholar 

  59. Young JC, Hartl FU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J 19(21):5930–5940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Richter K, Walter S, Buchner J (2004) The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J Mol Biol 342(5):1403–1413

    Article  CAS  PubMed  Google Scholar 

  61. Ali MM et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440(7087):1013–1017

    Article  CAS  PubMed  Google Scholar 

  62. Cox MB, Miller CA 3rd (2004) Cooperation of heat shock protein 90 and p23 in aryl hydrocarbon receptor signaling. Cell Stress Chaperones 9(1):4–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weikl T, Abelmann K, Buchner J (1999) An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function. J Mol Biol 293(3):685–691

    Article  CAS  PubMed  Google Scholar 

  64. Freeman BC, Toft DO, Morimoto RI (1996) Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science 274(5293):1718–1720

    Article  CAS  PubMed  Google Scholar 

  65. Grad I et al (2006) The Hsp90 cochaperone p23 is essential for perinatal survival. Mol Cell Biol 26(23):8976–8983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fang Y et al (1998) SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol Cell Biol 18(7):3727–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pare JM, LaPointe P, Hobman TC (2013) Hsp90 cochaperones p23 and FKBP4 physically interact with hAgo2 and activate RNA interference-mediated silencing in mammalian cells. Mol Biol Cell 24(15):2303–2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Echtenkamp FJ et al (2011) Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Mol Cell 43(2):229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang M et al (2008) Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO J 27(20):2789–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kadota Y et al (2008) Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep 9(12):1209–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Catlett MG, Kaplan KB (2006) Sgt1p is a unique co-chaperone that acts as a client-adaptor to link Hsp90 to Skp1p. J Biol Chem 281(44):33739–33748

    Article  CAS  PubMed  Google Scholar 

  72. Eckl JM et al (2014) Nematode Sgt1-homologue D1054.3 binds open and closed conformations of Hsp90 via distinct binding sites. Biochemistry 53(15):2505–2514

    Article  CAS  PubMed  Google Scholar 

  73. Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14(1):83–94

    Article  CAS  PubMed  Google Scholar 

  74. Picard D (2008) A stress protein interface of innate immunity. EMBO Rep 9(12):1193–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goral A et al (2016) Calcyclin binding protein/Siah-1 interacting protein is a Hsp90 binding chaperone. PLoS One 11(6):e0156507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Echeverria PC, Briand PA, Picard D (2016) A remodeled Hsp90 molecular chaperone ensemble with the novel cochaperone Aarsd1 is required for muscle differentiation. Mol Cell Biol 36(8):1310–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mandal AK et al (2007) Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation. J Cell Biol 176(3):319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vaughan CK et al (2008) Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol Cell 31(6):886–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roe SM et al (2004) The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116(1):87–98

    Article  CAS  PubMed  Google Scholar 

  80. Panaretou B et al (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 10(6):1307–1318

    Article  CAS  PubMed  Google Scholar 

  81. Lotz GP et al (2003) Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J Biol Chem 278(19):17228–17235

    Article  CAS  PubMed  Google Scholar 

  82. Meyer P et al (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23(6):1402–1410

    Article  CAS  PubMed  Google Scholar 

  83. Wolmarans A et al (2016) The mechanism of Hsp90 ATPase stimulation by Aha1. Sci Rep 6:33179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nathan DF, Vos MH, Lindquist S (1999) Identification of SSF1, CNS1, and HCH1 as multicopy suppressors of a Saccharomyces cerevisiae Hsp90 loss-of-function mutation. Proc Natl Acad Sci U S A 96(4):1409–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Armstrong H et al (2012) The co-chaperone Hch1 regulates Hsp90 function differently than its homologue Aha1 and confers sensitivity to yeast to the Hsp90 inhibitor NVP-AUY922. PLoS One 7(11):e49322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Horvat NK et al (2014) A mutation in the catalytic loop of hsp90 specifically impairs ATPase stimulation by aha1p, but not hch1p. J Mol Biol 426(12):2379–2392

    Article  CAS  PubMed  Google Scholar 

  87. Johnson JL et al (2014) Mutation of essential Hsp90 co-chaperones SGT1 or CNS1 renders yeast hypersensitive to overexpression of other co-chaperones. Curr Genet 60(4):265–276

    Article  CAS  PubMed  Google Scholar 

  88. Zuehlke AD et al (2017) An Hsp90 cochaperone protein in yeast is functionally replaced by site-specific posttranslational modification in human. Nat Commun 8:15328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koulov AV et al (2010) Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol Biol Cell 21(6):871–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang X et al (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127(4):803–815

    Article  CAS  PubMed  Google Scholar 

  91. Peng YJ et al (2016) Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90beta. Sci Rep 6:32444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dunn DM et al (2015) c-Abl mediated tyrosine phosphorylation of Aha1 activates its co-chaperone function in cancer cells. Cell Rep 12(6):1006–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun L, Hartson SD, Matts RL (2015) Identification of proteins associated with Aha1 in HeLa cells by quantitative proteomics. Biochim Biophys Acta 1854(5):365–380

    Article  CAS  PubMed  Google Scholar 

  94. Scheufler C et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101(2):199–210

    Article  CAS  PubMed  Google Scholar 

  95. Alvira S et al (2014) Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Nat Commun 5:5484

    Article  PubMed  Google Scholar 

  96. Li J, Richter K, Buchner J (2011) Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol 18(1):61–66

    Article  PubMed  CAS  Google Scholar 

  97. Assimon VA, Southworth DR, Gestwicki JE (2015) Specific binding of tetratricopeptide repeat proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry 54(48):7120–7131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brinker A et al (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes. J Biol Chem 277(22):19265–19275

    Article  CAS  PubMed  Google Scholar 

  99. Millson SH et al (2008) Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochem J 413(2):261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Prodromou C et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18(3):754–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Richter K et al (2003) Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J Biol Chem 278(12):10328–10333

    Article  CAS  PubMed  Google Scholar 

  102. Wegele H et al (2003) Sti1 is a novel activator of the Ssa proteins. J Biol Chem 278(28):25970–25976

    Article  CAS  PubMed  Google Scholar 

  103. Chen S, Smith DF (1998) Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J Biol Chem 273(52):35194–35200

    Article  CAS  PubMed  Google Scholar 

  104. Rohl A et al (2015) Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nat Commun 6:6655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Lee CT et al (2012) Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. EMBO J 31(6):1518–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex. Mol Cell 42(6):771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schmid AB et al (2012) The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J 31(6):1506–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rohl A et al (2015) Hop/Sti1 phosphorylation inhibits its co-chaperone function. EMBO Rep 16(2):240–249

    Article  PubMed  CAS  Google Scholar 

  109. Longshaw VM et al (2004) Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases. J Cell Sci 117(Pt 5):701–710

    Article  CAS  PubMed  Google Scholar 

  110. Chen L et al (2010) The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7(3):185–196

    Article  CAS  PubMed  Google Scholar 

  111. Chen S et al (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3(2):118–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bergmayr C et al (2013) Recruitment of a cytoplasmic chaperone relay by the A2A adenosine receptor. J Biol Chem 288(40):28831–28844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Romano SA et al (2009) Reciprocal remodeling upon binding of the prion protein to its signaling partner hop/STI1. FASEB J 23(12):4308–4316

    Article  CAS  PubMed  Google Scholar 

  114. Baindur-Hudson S, Edkins AL, Blatch GL (2015) Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins. Subcell Biochem 78:69–90

    Article  CAS  PubMed  Google Scholar 

  115. Chang HC, Nathan DF, Lindquist S (1997) In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol Cell Biol 17(1):318–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Beraldo FH et al (2015) Hyperactivity and attention deficits in mice with decreased levels of stress-inducible phosphoprotein 1 (STIP1). Dis Model Mech 8(11):1457–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Willmer T et al (2013) Knockdown of Hop downregulates RhoC expression, and decreases pseudopodia formation and migration in cancer cell lines. Cancer Lett 328(2):252–260

    Article  CAS  PubMed  Google Scholar 

  118. Barik S (2006) Immunophilins: for the love of proteins. Cell Mol Life Sci 63(24):2889–2900

    Article  CAS  PubMed  Google Scholar 

  119. Bose S et al (1996) Chaperone function of Hsp90-associated proteins. Science 274(5293):1715–1717

    Article  CAS  PubMed  Google Scholar 

  120. Quinta HR, Galigniana MD (2012) The neuroregenerative mechanism mediated by the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal differentiation. Br J Pharmacol 166(2):637–649. https://doi.org/10.1111/j.1476-5381.2011.01783.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Quinta HR et al (2011) Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal 23(12):1907–1920. https://doi.org/10.1016/j.cellsig.2011.07.023. Epub 2011 Aug 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chattopadhaya S, Harikishore A, Yoon HS (2011) Role of FK506 binding proteins in neurodegenerative disorders. Curr Med Chem 18(35):5380–5397

    Article  CAS  PubMed  Google Scholar 

  123. Chambraud B et al (2007) The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation. FASEB J 21(11):2787–2797

    Article  CAS  PubMed  Google Scholar 

  124. Chambraud B et al (2010) A role for FKBP52 in Tau protein function. Proc Natl Acad Sci U S A 107(6):2658–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jinwal UK et al (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30(2):591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Erlejman AG et al (2014) Molecular chaperone activity and biological regulatory actions of the TPR-domain immunophilins FKBP51 and FKBP52. Curr Protein Pept Sci 15(3):205–215

    Article  CAS  PubMed  Google Scholar 

  127. Storer CL et al (2011) FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab 22(12):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zuehlke AD, Johnson JL (2012) Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae. Genetics 191:805–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zuehlke AD et al (2013) Interaction of heat shock protein 90 and the co-chaperone Cpr6 with Ura2, a bifunctional enzyme required for pyrimidine biosynthesis. J Biol Chem 288(38):27406–27414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mayr C et al (2000) Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties. J Biol Chem 275(44):34140–34146

    Article  CAS  PubMed  Google Scholar 

  131. Duina AA et al (1996) A cyclophilin function in Hsp90-dependent signal transduction. Science 274(5293):1713–1715

    Article  CAS  PubMed  Google Scholar 

  132. Duina AA et al (1998) The peptidyl-prolyl isomerase domain of the CyP-40 cyclophilin homolog Cpr7 is not required to support growth or glucocorticoid receptor activity in Saccharomyces cerevisiae. J Biol Chem 273(18):10819–10822

    Article  CAS  PubMed  Google Scholar 

  133. Mok D et al (2006) The chaperone function of cyclophilin 40 maps to a cleft between the prolyl isomerase and tetratricopeptide repeat domains. FEBS Lett 580(11):2761–2768

    Article  CAS  PubMed  Google Scholar 

  134. Riggs DL et al (2007) Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling. Mol Cell Biol 27(24):8658–8669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cheung-Flynn J et al (2005) Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 19(6):1654–1666

    Article  CAS  PubMed  Google Scholar 

  136. Hartmann J et al (2012) Fkbp52 heterozygosity alters behavioral, endocrine and neurogenetic parameters under basal and chronic stress conditions in mice. Psychoneuroendocrinology 37(12):2009–2021

    Article  CAS  PubMed  Google Scholar 

  137. O’Leary JC III et al (2011) A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PLoS One 6(9):e24840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Touma C et al (2011) FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry 70(10):928–936

    Article  CAS  PubMed  Google Scholar 

  139. Tranguch S et al (2005) Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc Natl Acad Sci U S A 102(40):14326–14331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tranguch S, Smith DF, Dey SK (2006) Progesterone receptor requires a co-chaperone for signalling in uterine biology and implantation. Reprod Biomed Online 13(5):651–660

    Article  CAS  PubMed  Google Scholar 

  141. Warrier M et al (2010) Susceptibility to diet-induced hepatic steatosis and glucocorticoid resistance in FK506-binding protein 52-deficient mice. Endocrinology 151(7):3225–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yong W et al (2007) Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J Biol Chem 282(7):5026–5036. Epub 2006 Dec 1

    Article  CAS  PubMed  Google Scholar 

  143. Tranguch S et al (2007) FKBP52 deficiency-conferred uterine progesterone resistance is genetic background and pregnancy stage specific. J Clin Invest 117(7):1824–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hartmann J et al (2012) The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology 62(1):332–339

    Article  CAS  PubMed  Google Scholar 

  145. Maiaru M et al (2016) The stress regulator FKBP51 drives chronic pain by modulating spinal glucocorticoid signaling. Sci Transl Med 8(325):325ra19. https://doi.org/10.1126/scitranslmed.aab3376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Smith DF, Toft DO (2008) The intersection of steroid receptors with molecular chaperones: observations and questions. Mol Endocrinol 22:2229–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hinds TD Jr, Sanchez ER (2008) Protein phosphatase 5. Int J Biochem Cell Biol 40:2358–2362

    Article  CAS  PubMed  Google Scholar 

  148. Wandinger SK et al (2006) The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J 25(2):367–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schreiber TB et al (2012) Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae. J Proteome Res 11(4):2397–2408

    Article  CAS  PubMed  Google Scholar 

  150. Zhao R et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715–727

    Article  CAS  PubMed  Google Scholar 

  151. Rohl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38(5):253–262

    Article  PubMed  CAS  Google Scholar 

  152. Lee P et al (2002) The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability. J Cell Biol 159(6):1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mandal AK et al (2008) Ydj1 protects nascent protein kinases from degradation and controls the rate of their maturation. Mol Cell Biol 28(13):4434–4444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dey B, Caplan AJ, Boschelli F (1996) The Ydj1 molecular chaperone facilitates formation of active p60v-src in yeast. Mol Biol Cell 7(1):91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nathan DF, Lindquist S (1995) Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol 15(7):3917–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Louvion JF, Abbas-Terki T, Picard D (1998) Hsp90 is required for pheromone signaling in yeast. Mol Biol Cell 9(11):3071–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Abbas-Terki T, Donze O, Picard D (2000) The molecular chaperone Cdc37 is required for Ste11 function and pheromone-induced cell cycle arrest. FEBS Lett 467(1):111–116

    Article  CAS  PubMed  Google Scholar 

  158. Flom GA et al (2008) Farnesylation of Ydj1 is required for in vivo interaction with Hsp90 client proteins. Mol Biol Cell 19(12):5249–5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mandal AK et al (2010) Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol Biol Cell 21(9):1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee P et al (2004) Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. Mol Biol Cell 15(4):1785–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Donze O, Abbas-Terki T, Picard D (2001) The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J 20(14):3771–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Donze O, Picard D (1999) Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the alpha subunit of eukaryotic translation initiation factor 2 [corrected]. Mol Cell Biol 19(12):8422–8432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Whitesell L et al (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91(18):8324–8328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Xu W et al (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276(5):3702–3708

    Article  CAS  PubMed  Google Scholar 

  165. Schulte TW et al (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3(2):100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. An WG, Schulte TW, Neckers LM (2000) The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 11(7):355–360

    CAS  PubMed  Google Scholar 

  167. Silverstein AM et al (1998) p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. J Biol Chem 273(32):20090–20095

    Article  CAS  PubMed  Google Scholar 

  168. Xu W et al (2012) Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine. Mol Cell 47(3):434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Arlander SJ et al (2006) Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 281(5):2989–2998

    Article  CAS  PubMed  Google Scholar 

  170. Kost SL et al (1989) Binding of heat shock proteins to the avian progesterone receptor. Mol Cell Biol 9(9):3829–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hutchison KA, Dittmar KD, Pratt WB (1994) All of the factors required for assembly of the glucocorticoid receptor into a functional heterocomplex with heat shock protein 90 are preassociated in a self-sufficient protein folding structure, a “foldosome”. J Biol Chem 269(45):27894–27899

    CAS  PubMed  Google Scholar 

  172. Smith DF et al (1990) Reconstitution of progesterone receptor with heat shock proteins. Mol Endocrinol 4(11):1704–1711

    Article  CAS  PubMed  Google Scholar 

  173. Smith DF et al (1992) Assembly of progesterone receptor with heat shock proteins and receptor activation are ATP mediated events. J Biol Chem 267:1350–1356

    CAS  PubMed  Google Scholar 

  174. Dittmar KD et al (1996) Reconstitution of the steroid receptor.hsp90 heterocomplex assembly system of rabbit reticulocyte lysate. J Biol Chem 271(22):12833–12839

    Article  CAS  PubMed  Google Scholar 

  175. Kosano H et al (1998) The assembly of progesterone receptor-hsp90 complexes using purified proteins. J Biol Chem 273(49):32973–32979

    Article  CAS  PubMed  Google Scholar 

  176. Hernandez MP, Sullivan WP, Toft DO (2002) The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 277(41):38294–38304

    Article  CAS  PubMed  Google Scholar 

  177. Morishima Y et al (2000) Stepwise assembly of a glucocorticoid receptor.hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J Biol Chem 275(24):18054–18060

    Article  CAS  PubMed  Google Scholar 

  178. Hernandez MP, Chadli A, Toft DO (2002) HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem 277(14):11873–11881

    Article  CAS  PubMed  Google Scholar 

  179. Murphy PJ et al (2003) Visualization and mechanism of assembly of a glucocorticoid receptor.Hsp70 complex that is primed for subsequent Hsp90-dependent opening of the steroid binding cleft. J Biol Chem 278(37):34764–34773

    Article  CAS  PubMed  Google Scholar 

  180. Kimura Y, Yahara I, Lindquist S (1995) Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science 268(5215):1362–1365

    Article  CAS  PubMed  Google Scholar 

  181. Johnson JL, Craig EA (2000) A role for the Hsp40 Ydj1 in repression of basal steroid receptor activity in yeast. Mol Cell Biol 20(9):3027–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bohen SP (1998) Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins. Mol Cell Biol 18(6):3330–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hildenbrand ZL et al (2011) Hsp90 can accommodate the simultaneous binding of the FKBP52 and HOP proteins. Oncotarget 2(1–2):45–58

    Google Scholar 

  184. Cheung J, Smith DF (2000) Molecular chaperone interactions with steroid receptors: an update. Mol Endocrinol 14(7):939–946

    Article  CAS  PubMed  Google Scholar 

  185. Davies TH, Ning YM, Sanchez ER (2005) Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 44(6):2030–2038

    Article  CAS  PubMed  Google Scholar 

  186. Riggs DL et al (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22(5):1158–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Galigniana MD et al (2002) Binding of hsp90-associated immunophilins to cytoplasmic dynein: direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain. Biochemistry 41(46):13602–13610

    Article  CAS  PubMed  Google Scholar 

  188. Galigniana MD et al (2001) Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J Biol Chem 276(18):14884–14889

    Article  CAS  PubMed  Google Scholar 

  189. Echeverria PC et al (2009) Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta. Mol Cell Biol 29(17):4788–4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pratt WB et al (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16(8):857–872

    Article  CAS  PubMed  Google Scholar 

  191. Htun H et al (1999) Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor. Mol Biol Cell 10(2):471–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lim CS et al (1999) Differential localization and activity of the A- and B-forms of the human progesterone receptor using green fluorescent protein chimeras. Mol Endocrinol 13(3):366–375

    Article  CAS  PubMed  Google Scholar 

  193. Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296(5576):2232–2235

    Article  CAS  PubMed  Google Scholar 

  194. Silverstein AM et al (1999) Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein. J Biol Chem 274(52):36980–36986

    Article  CAS  PubMed  Google Scholar 

  195. Storer Samaniego C et al (2015) The FKBP52 Cochaperone Acts in Synergy with beta-Catenin to Potentiate Androgen Receptor Signaling. PLoS One 10(7):e0134015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Cluning C et al (2013) The helix 1-3 loop in the glucocorticoid receptor LBD is a regulatory element for FKBP cochaperones. Mol Endocrinol 27(7):1020–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Iki T et al (2012) Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J 31(2):267–278

    Article  CAS  PubMed  Google Scholar 

  198. Stuttmann J, Parker JE, Noel LD (2008) Staying in the fold: the SGT1/chaperone machinery in maintenance and evolution of leucine-rich repeat proteins. Plant Signal Behav 3(5):283–285

    Article  PubMed  PubMed Central  Google Scholar 

  199. Willhoft O et al (2017) The crystal structure of the Sgt1-Skp1 complex: the link between Hsp90 and both SCF E3 ubiquitin ligases and kinetochores. Sci Rep 7:41626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bansal PK, Abdulle R, Kitagawa K (2004) Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex. Mol Cell Biol 24(18):8069–8079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Noel LD et al (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19(12):4061–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hong TJ, Hahn JS (2016) Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli. Biochem Biophys Res Commun 478(4):1647–1652

    Article  CAS  PubMed  Google Scholar 

  203. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772

    Article  CAS  PubMed  Google Scholar 

  204. Butler LM et al (2015) Maximizing the therapeutic potential of HSP90 inhibitors. Mol Cancer Res 13(11):1445–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. McDowell CL, Bryan Sutton R, Obermann WM (2009) Expression of Hsp90 chaperome proteins in human tumor tissue. Int J Biol Macromol 45(3):310–314

    Article  CAS  PubMed  Google Scholar 

  206. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18(1):64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Koga F, Kihara K, Neckers L (2009) Inhibition of cancer invasion and metastasis by targeting the molecular chaperone heat-shock protein 90. Anticancer Res 29(3):797–807

    CAS  PubMed  Google Scholar 

  208. Sawai A et al (2008) Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res 68(2):589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Veri A, Cowen LE (2014) Progress and prospects for targeting Hsp90 to treat fungal infections. Parasitology 141(9):1–11

    Article  CAS  Google Scholar 

  210. Wang W et al (2016) Y-632 inhibits heat shock protein 90 (Hsp90) function by disrupting the interaction between Hsp90 and Hsp70/Hsp90 organizing protein, and exerts antitumor activity in vitro and in vivo. Cancer Sci 107(6):782–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Patwardhan CA et al (2013) Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J Biol Chem 288(10):7313–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. He Y et al (2016) Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer. Nat Commun 7:13122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Smith JR et al (2015) Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins. Oncogene 34(1):15–26

    Article  CAS  PubMed  Google Scholar 

  214. Periyasamy S et al (2007) The immunophilin ligands cyclosporin A and FK506 suppress prostate cancer cell growth by androgen receptor-dependent and -independent mechanisms. Endocrinology 148(10):4716–4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. De Leon JT et al (2011) Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc Natl Acad Sci U S A 108(29):11878–11883

    Article  PubMed  PubMed Central  Google Scholar 

  216. Suh JH et al (2015) Similarities and distinctions in actions of surface-directed and classic androgen receptor antagonists. PLoS One 10(9):e0137103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Liang S et al (2016) Solution formulation development and efficacy of MJC13 in a preclinical model of castration-resistant prostate cancer. Pharm Dev Technol 21(1):121–126

    Article  CAS  PubMed  Google Scholar 

  218. Zhang L, Hach A, Wang C (1998) Molecular mechanism governing heme signaling in yeast: a higher-order complex mediates heme regulation of the transcriptional activator HAP1. Mol Cell Biol 18(7):3819–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nair SC et al (1996) A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1(4):237–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Blagosklonny MV et al (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci U S A 93(16):8379–8383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Minet E et al (1999) Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460(2):251–256

    Article  CAS  PubMed  Google Scholar 

  222. Aligue R, Akhavan-Niak H, Russell P (1994) A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J 13(24):6099–6106

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97(20):10832–10837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hu J, Toft DO, Seeger C (1997) Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J 16(1):59–68

    Article  PubMed  PubMed Central  Google Scholar 

  225. Eustace BK et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6(6):507–514

    Article  CAS  PubMed  Google Scholar 

  226. da Silva Correia J et al (2007) SGT1 is essential for Nod1 activation. Proc Natl Acad Sci U S A 104(16):6764–6769

    Article  PubMed  PubMed Central  Google Scholar 

  227. Caplan AJ, Mandal AK, Theodoraki MA (2007) Molecular chaperones and protein kinase quality control. Trends Cell Biol 17(2):87–92

    Article  CAS  PubMed  Google Scholar 

  228. Siligardi G et al (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277(23):20151–20159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.B.C. is supported in part by NIH/NIGMS grant No. 1SC1GM084863 and Grant Number 5G12RR008124 (to the Border Biomedical Research Center/University of Texas at El Paso) from the National Center for Research Resources (NCRR/NIH). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill L. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cox, M.B., Johnson, J.L. (2018). Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics