Skip to main content

Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA

  • Protocol
  • First Online:
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1572))

Abstract

This chapter reviews the design, fabrication, characterization, and application of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. The sensor transduction mechanism, sensing principle, and mode of operation are discussed. Bio-recognition strategies and surface functionalization methods for detection of DNA and RNA are discussed with a focus on self-assembly-based approaches. Methods for the verification of biosensor response via secondary binding assays, reversible binding assays, and the integration of complementary transduction mechanisms are presented. Sensing applications for medical diagnostics, food safety, and environmental monitoring are provided. PEMC sensor technology provides a robust platform for the real-time, label-free detection of DNA and RNA in complex matrices over nanomolar (nM) to attomolar (aM) concentration ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Zhang JF, Zen K, Zhang CY (2011) MicroRNAs as blood-based biomarkers of cancer. MicroRNAs in cancer translational research. Springer, New York

    Google Scholar 

  2. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. P Natl Acad Sci USA 105:10513–10518

    Article  CAS  Google Scholar 

  3. Mostert B, Sieuwerts AM, Martens JWM, Sleijfer S (2011) Diagnostic applications of cell-free and circulating tumor cell-associated miRNAs in cancer patients. Expert Rev Mol Diagn 11:259–275

    CAS  Google Scholar 

  4. Yu DC, Li QG, Ding XW, Ding YT (2011) Circulating microRNAs: potential biomarkers for cancer. Int J Mol Sci 12:2055–2063

    Article  CAS  Google Scholar 

  5. Sharma H, Mutharasan R (2013) Review of biosensors for foodborne pathogens and toxins. Sens Actuators B 183:535–549

    Article  CAS  Google Scholar 

  6. McKillip JL, Drake M (2004) Real-time nucleic acid-based detection methods for pathogenic bacteria in food. J Food Prot 67:823–832

    Article  CAS  Google Scholar 

  7. Johnson BN, Mutharasan R (2012) Biosensing applications using dynamic-mode cantilever sensors: a review. Biosens Bioelectron 32:1–18

    Article  CAS  Google Scholar 

  8. Johnson BN, Mutharasan R (2014) Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 139:1576–1588

    Article  CAS  Google Scholar 

  9. Johnson BN, Mutharasan R (2012) Sample preparation-free, real-time detection of microRNA in human serum using piezoelectric cantilever biosensors at attomole level. Anal Chem 84:10426–10436

    Article  CAS  Google Scholar 

  10. Sharma H, Mutharasan R (2013) hlyA gene-based sensitive detection of Listeria monocytogenes using a novel cantilever sensor. Anal Chem 85:3222–3228

    Article  CAS  Google Scholar 

  11. Johnson BN, Mutharasan R (2013) A cantilever biosensor-based assay for toxin-producing cyanobacteria Microcystis aeruginosa using 16S rRNA. Environ Sci Technol 47:12333–12341

    Article  CAS  Google Scholar 

  12. Rijal K, Mutharasan R (2007) PEMC-based method of measuring DNA hybridization at femtomolar concentration directly in human serum and in the presence of copious noncomplementary strands. Anal Chem 79:7392–7400

    Article  CAS  Google Scholar 

  13. Johnson BN, Mutharasan R (2011) Persistence of bending and torsional modes in piezoelectric-excited millimeter-sized cantilever (PEMC) sensors in viscous liquids-1 to 10(3) cP. J Appl Phys 109:066105

    Article  Google Scholar 

  14. Timoshenko S (1937) Vibration problems in engineering, Second edn. Van Nostrand Company, Inc., New York, NY

    Google Scholar 

  15. Maraldo D, Mutharasan R (2010) Mass-change sensitivity of high-order mode of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors: Theory and experiments. Sens Actuators B 143:731–739

    Article  CAS  Google Scholar 

  16. Johnson BN, Mutharasan R (2011) A novel experimental technique for determining node location in resonant mode cantilevers. J Micromech Microeng 21:065027

    Article  Google Scholar 

  17. Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959

    CAS  Google Scholar 

  18. Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84:64–76

    Article  CAS  Google Scholar 

  19. Johnson BN, Sharma H, Mutharasan R (2013) Torsional and lateral resonant modes of cantilevers as biosensors: alternatives to bending modes. Anal Chem 85:1760–1766

    Article  CAS  Google Scholar 

  20. Johnson BN, Mutharasan R (2011) The origin of low-order and high-order impedance-coupled resonant modes in piezoelectric-excited millimeter-sized cantilever (PEMC) sensors: experiments and finite element models. Sens Actuators B 155:868–877

    Article  CAS  Google Scholar 

  21. Sharma H, Lakshmanan RS, Johnson BN, Mutharasan R (2011) Piezoelectric cantilever sensors with asymmetric anchor exhibit picogram sensitivity in liquids. Sens Actuators B 153:64–70

    Article  CAS  Google Scholar 

  22. Johnson BN, Mutharasan R (2010) Expression of picogram sensitive bending modes in piezoelectric cantilever sensors with nonuniform electric fields generated by asymmetric electrodes. Rev Sci Instrum 81:125108

    Article  Google Scholar 

  23. Van Eysden CA, Sader JE (2006) Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J Appl Phys 100:114916

    Article  Google Scholar 

  24. Rijal K, Mutharasan R (2007) Method for measuring the self-assembly of alkanethiols on gold at femtomolar concentrations. Langmuir 23:6856–6863

    Article  CAS  Google Scholar 

  25. Johnson BN, Mutharasan R (2013) Regeneration of gold surfaces covered by adsorbed thiols and proteins using liquid-phase hydrogen peroxide-mediated UV-Photooxidation. J Phys Chem C 117:1335–1341

    Article  CAS  Google Scholar 

  26. Campbell GA, Mutharasan R (2005) Monitoring of the self-assembled monolayer of 1-hexadecanethiol on a gold surface at nanomolar concentration using a piezo-excited millimeter-sized cantilever sensor. Langmuir 21:11568–11573

    Article  CAS  Google Scholar 

  27. Johnson BN, Mutharasan R (2012) pH effect on protein G orientation on gold surfaces and characterization of adsorption thermodynamics. Langmuir 28:6928–6934

    Article  CAS  Google Scholar 

  28. Campbell GA, Delesdernier D, Mutharasan R (2007) Detection of airborne Bacillus anthracis spores by an integrated system of an air sampler and a cantilever immunosensor. Sens Actuators B 127:376–382

    Article  CAS  Google Scholar 

  29. Campbell GA, Mutharasan R (2008) Near real-time detection of Cryptosporidium parvum oocyst by IgM-functionalized piezoelectric-excited millimeter-sized cantilever biosensor. Biosens Bioelectron 23:1039–1045

    Article  CAS  Google Scholar 

  30. Johnson BN, Mutharasan R (2014) Reduction of nonspecific protein adsorption on cantilever biosensors caused by transverse resonant mode vibration. Analyst 139:1112–1120

    Article  CAS  Google Scholar 

  31. Meyer GD, Moran-Mirabal JM, Branch DW, Craighead HG (2006) Nonspecific binding removal from protein microarrays using thickness shear mode resonators. Sensors 6:254–261

    Article  CAS  Google Scholar 

  32. Johnson BN, Mutharasan R (2013) Electrochemical piezoelectric-excited millimeter-sized cantilever (ePEMC) for simultaneous dual transduction biosensing. Analyst 138:6365–6371

    Article  CAS  Google Scholar 

  33. Maraldo D, Rijal K, Campbell G, Mutharasan R (2007) Method for label-free detection of femtogram quantities of biologics in flowing liquid samples. Anal Chem 79:2762–2770

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake N. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Haring, A.P., Cesewski, E., Johnson, B.N. (2017). Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA. In: Prickril, B., Rasooly, A. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1572. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6911-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6911-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6910-4

  • Online ISBN: 978-1-4939-6911-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics