Skip to main content
Book cover

Th9 Cells pp 83–92Cite as

Determining the Frequencies of Th9 Cells from Whole Blood

  • Protocol
  • First Online:
  • 1228 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1585))

Abstract

Th9 cells are a subset of CD4+ T cells producing the cytokine, IL-9. Th9 cells are increasingly recognized as being important player in allergy, autoimmunity, and antitumor responses. The polarization and expansion of Th9 cells requires the cytokines IL-4, TGF-β. In this chapter, we described the protocol for measuring Th9 frequencies using whole blood.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11(6):527–534. doi:10.1038/ni.1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khy S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol (12):1347–1355. doi:10.1038/ni.1677

  3. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346. doi:10.1038/ni.1659

    Article  CAS  PubMed  Google Scholar 

  4. Kaplan MH, Glosson NL, Stritesky GL, Yeh N, Kinzfogl J, Rohrabaugh SL, Goswami R, Pham D, Levy DE, Brutkiewicz RR, Blum JS, Cooper S, Hangoc G, Broxmeyer HE (2011) STAT3-dependent IL-21 production from T helper cells regulates hematopoietic progenitor cell homeostasis. Blood 117(23):6198–6201. doi:10.1182/blood-2011-02-334367

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S, Kuhn R, Muller W, Palm N, Rude E (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153(9):3989–3996

    CAS  PubMed  Google Scholar 

  6. Schmitt E, Van Brandwijk R, Van Snick J, Siebold B, Rude E (1989) TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur J Immunol 19(11):2167–2170. doi:10.1002/eji.1830191130

    Article  CAS  PubMed  Google Scholar 

  7. O'Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327(5969):1098–1102. doi:10.1126/science.1178334

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li XC, Schachter AD, Zand MS, Li Y, Zheng XX, Harmon WE, Strom TB (1998) Differential expression of T-cell growth factors in rejecting murine islet and human renal allografts: conspicuous absence of interleukin (IL)-9 despite expression of IL-2, IL-4, IL-7, and IL-15. Transplantation 66(2):265–268

    Article  CAS  PubMed  Google Scholar 

  9. Noelle RJ, Nowak EC (2010) Cellular sources and immune functions of interleukin-9. Nat Rev Immunol 10(10):683–687. doi:10.1038/nri2848

    Article  CAS  PubMed  Google Scholar 

  10. Wilhelm C, Turner JE, Van Snick J, Stockinger B (2012) The many lives of IL-9: a question of survival? Nat Immunol 13(7):637–641. doi:10.1038/ni.2303

    Article  CAS  PubMed  Google Scholar 

  11. Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252(1):104–115. doi:10.1111/imr.12028

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kaplan MH, Hufford MM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol 15(5):295–307. doi:10.1038/nri3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T, Elyaman W, Khy SJ, Kuchroo VK, Baecher-Allan C, Hafler DA (2010) TGF-beta induces IL-9 production from human Th17 cells. J Immunol 185(1):46–54. doi:10.4049/jimmunol.1000356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones CP, Gregory LG, Causton B, Campbell GA, Lloyd CM (2012) Activin A and TGF-beta promote T(H)9 cell-mediated pulmonary allergic pathology. J Allergy Clin Immunol 129(4):1000–1010. doi:10.1016/j.jaci.2011.12.965e1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao W, Zhang Y, Jabeen R, Nguyen ET, Wilkes DS, Tepper RS, Kaplan MH, Zhou B (2013) Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity 38(2):360–372. doi:10.1016/j.immuni.2013.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soroosh P, Doherty TA (2009) Th9 and allergic disease. Immunology 127(4):450–458. doi:10.1111/j.1365-2567.2009.03114.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yao W, Tepper RS, Kaplan MH (2011) Predisposition to the development of IL-9-secreting T cells in atopic infants. J Allergy Clin Immunol 128(6):1357–1360 . doi:10.1016/j.jaci.2011.06.019e1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan HF, Leng RX, Li XP, Zheng SG, Ye DQ (2013) Targeting T-helper 9 cells and interleukin-9 in autoimmune diseases. Cytokine Growth Factor Rev 24(6):515–522

    Article  CAS  PubMed  Google Scholar 

  19. Porto AF, Neva FA, Bittencourt H, Lisboa W, Thompson R, Alcantara L, Carvalho EM (2001) HTLV-1 decreases Th2 type of immune response in patients with strongyloidiasis. Parasite Immunol 23(9):503–507

    Article  CAS  PubMed  Google Scholar 

  20. Rotman HL, Schnyder-Candrian S, Scott P, Nolan TJ, Schad GA, Abraham D (1997) IL-12 eliminates the Th-2 dependent protective immune response of mice to larval Strongyloides stercoralis. Parasite Immunol 19(1):29–39

    Article  CAS  PubMed  Google Scholar 

  21. Gordy C, Pua H, Sempowski GD, He YW (2011) Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117(2):618–629. doi:10.1182/blood-2010-01-265959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jia W, Pua HH, Li QJ, He YW (2011) Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 186(3):1564–1574. doi:10.4049/jimmunol.1001822

    Article  CAS  PubMed  Google Scholar 

  23. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4(8):648–655. doi:10.1038/nri1416

    Article  CAS  PubMed  Google Scholar 

  24. Takami M, Love RB, Iwashima M (2012) TGF-beta converts apoptotic stimuli into the signal for Th9 differentiation. J Immunol 188(9):4369–4375. doi:10.4049/jimmunol.1102698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Waldrop SL, Davis KA, Maino VC, Picker LJ (1998) Normal human CD4+ memory T cells display broad heterogeneity in their activation threshold for cytokine synthesis. J Immunol 161(10):5284–5295

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Rajamanickam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rajamanickam, A., Babu, S. (2017). Determining the Frequencies of Th9 Cells from Whole Blood. In: Goswami, R. (eds) Th9 Cells. Methods in Molecular Biology, vol 1585. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6877-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6877-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6876-3

  • Online ISBN: 978-1-4939-6877-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics