Skip to main content

sRNAtoolboxVM: Small RNA Analysis in a Virtual Machine

  • Protocol
  • First Online:
MicroRNA Detection and Target Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1580))

Abstract

High-throughput sequencing (HTS) data for small RNAs (noncoding RNA molecules that are 20–250 nucleotides in length) can now be routinely generated by minimally equipped wet laboratories; however, the bottleneck in HTS-based research has shifted now to the analysis of such huge amount of data. One of the reasons is that many analysis types require a Linux environment but computers, system administrators, and bioinformaticians suppose additional costs that often cannot be afforded by small to mid-sized groups or laboratories. Web servers are an alternative that can be used if the data is not subjected to privacy issues (what very often is an important issue with medical data). However, in any case they are less flexible than stand-alone programs limiting the number of workflows and analysis types that can be carried out.

We show in this protocol how virtual machines can be used to overcome those problems and limitations. sRNAtoolboxVM is a virtual machine that can be executed on all common operating systems through virtualization programs like VirtualBox or VMware, providing the user with a high number of preinstalled programs like sRNAbench for small RNA analysis without the need to maintain additional servers and/or operating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7:36–41

    Article  CAS  PubMed  Google Scholar 

  2. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou M, Luo H (2013) MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol Biol 83:59–75

    Article  CAS  PubMed  Google Scholar 

  5. Bernal D, Trelis M, Montaner S, Cantalapiedra F, Galiano A, Hackenberg M, Marcilla A (2014) Surface analysis of dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics 105:232–241

    Article  CAS  PubMed  Google Scholar 

  6. Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, Ceroni A, Babayan SA, Blaxter M, Ivens A, Maizels RM (2014) Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 5:5488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hackenberg M, Rodríguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39:W132–W138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rueda A, Barturen G, Lebrón R, Gómez-Martín C, Alganza Á, Oliver JL, Hackenberg M (2015) sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res 43:W467–W473

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barturen G, Rueda A, Hamberg M, Alganza A, Lebron R (2014) sRNAbench: profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments. Methods in Next Generation Sequencing 1:21–31

    Article  Google Scholar 

  11. Cai L, Ye Y, Jiang Q, Chen Y, Lyu X, Li J, Wang S, Liu T, Cai H, Yao K, Li J-L, Li X (2015) Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat Commun 6:7353

    Article  PubMed  PubMed Central  Google Scholar 

  12. The SRA knowledge base, NCBI help manual. Staff SRAS: using the SRA toolkit to convert .sra files into other formats. 2011 Bethesda (MD)

    Google Scholar 

  13. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  14. Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49:213–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Langenberger D, Bermudez-Santana C, Hertel J, Hoffmann S, Khaitovich P, Stadler PF (2009) Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics 25:2298–2301

    Article  CAS  PubMed  Google Scholar 

  16. Chu EA, Wu JM, Tunkel DE, Ishman SL (2008) Nasopharyngeal carcinoma: the role of the Epstein-Barr virus. Medscape J Med 10:165

    PubMed  PubMed Central  Google Scholar 

  17. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4

    Google Scholar 

  18. Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229

    Article  CAS  PubMed  Google Scholar 

  19. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  20. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sturm M, Hackenberg M, Langenberger D, Frishman D (2010) TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics 11:292

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  24. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu H-J, Ma Y-K, Chen T, Wang M, Wang X-J: PsRobot (2012) A web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40, W22–W28.

    Google Scholar 

  26. Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568

    Article  CAS  PubMed  Google Scholar 

  27. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  28. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tarazona S, García F, Ferrer A, Dopazo J, Conesa A (2012) NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet J 17:18

    Article  Google Scholar 

  30. The RNAcentral Consortium (2015) RNAcentral: an international database of ncRNA sequences. Nucleic Acids Res 43:D123–D129

    Article  Google Scholar 

  31. Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37:D93–D97

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hackenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gómez-Martín, C., Lebrón, R., Rueda, A., Oliver, J.L., Hackenberg, M. (2017). sRNAtoolboxVM: Small RNA Analysis in a Virtual Machine. In: Dalmay, T. (eds) MicroRNA Detection and Target Identification. Methods in Molecular Biology, vol 1580. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6866-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6866-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6864-0

  • Online ISBN: 978-1-4939-6866-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics