Skip to main content

Clinical Pharmacology and Therapeutics

  • Chapter
  • First Online:

Abstract

Pharmacotherapeutics is an important element of space medicine practice. Assessing health risks, developing countermeasures, selecting relevant supplies for medical kits and providing appropriate training for crew members on the use of medical kits prior to the mission start are all major contributors of mission success. In this chapter, the standards applicable to clinical pharmacy practice are discussed, and best practices recommended. A review of existing evidence on the incidence and management of clinical conditions that have occurred during space flight is presented along with results of research conducted of drugs under the influence of microgravity. Ground-based models, such as bed-rest and animal surrogate studies, supplement and validate clinical observations from space missions. Space flight is associated with morphological and profound physiological changes, including alterations in fluid, electrolytes, and gastrointestinal function capable of affecting the pharmacokinetics—primarily after oral administration of medications. Exposure to the space environment, particularly radiation, can also shorten the shelf life of many chemical preparations, potentially affecting their efficacy, altering their bioavailability. Special packaging, radiation insulation of the medical storage area, and periodic return of samples to determine pharmacologic activity of medications is possible in Low Earth Orbit, such as the International Space Station, which offers a unique test-bed environment. Information on the absorption, distribution, metabolism, and excretion of major drug categories in the space microgravity environment is incomplete. Since research evidence on pharmacotherapeutics in space is sparse, clinical practitioners rely primarily on observational and anecdotal evidence compiled from individual crew opinions gathered from prior missions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Putcha L, Boyd JL, Bayuse TM, Vaksman Z, Daniels VR, Du B, Younker D. Chapter 5.2—Pharmacokinetic operations and research in space. In: Risin D, Stepanak PC, editors. Biomedical results of the Space Shuttle Program. Houston, TX: NASA; 2013.

    Google Scholar 

  2. NASA. Gemini Summary Conference. Washington, DC: NASA Office of Scientific and Technical Information; 1967. NASA SP-138.

    Google Scholar 

  3. Grimwood JM. Project Mercury: a chronology. Washington, DC: NASA Scientific and Technical Information Office; 1963. p. 207. NASA SP-4001.

    Google Scholar 

  4. Link MM. Space medicine in Project Mercury. Washington, DC: NASA Scientific and Technical Information Office; 1965. p. 143. NASA SP-4003.

    Google Scholar 

  5. Hawkins WR, Ziegleschmid JF. Clinical aspects of crew health. In: Johnston RL, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington, DC: US Government Printing Office; 1975. p. 43–81. NASA SP-368.

    Google Scholar 

  6. Nicogossian AE, editor. The Apollo-Soyuz Test Project: medical report. Washington, DC: NASA Scientific and Technical Information Office; 1977. NASA SP-411.

    Google Scholar 

  7. Meyer JH, Elashoff J, Porter-Fink V, Dressman J, Amidon GL. Human postprandial gastric emptying of 1- to 3-mm spheres. Gastroenterology. 1988;94:315–25.

    Article  Google Scholar 

  8. Levine RR. Factors affecting gastrointestinal absorption of drugs. Am J Dig Dis. 1970;15(2):171–88.

    Article  CAS  PubMed  Google Scholar 

  9. Gibaldi M, Perrier D, editors. Pharmacokinetics. 2nd ed. New York: Marcel Dekker, Inc; 1982.

    Google Scholar 

  10. Berlin Jr CM, Yaffe SJ, Ragni M. Disposition of acetaminophen in milk, saliva, and plasma of lactating women. Pediatr Pharmacol (New York). 1980;1(12):135–41.

    CAS  Google Scholar 

  11. Pool SL, Davis JR, Cintron NM, Nicogossian AE. Medication use and therapeutic effectiveness on the first 33 Space Shuttle missions. In: Yojima K, editor. Aerospace Science: Third Nihon University International Symposium on Aerospace Science. Nihon: University Research Center, Nihon University; 1991. p. 131–6.

    Google Scholar 

  12. Putcha L, Cintron NM. Pharmacokinetic consequences of space flight. Ann N Y Acad Sci. 1991;618:615–8.

    Article  CAS  PubMed  Google Scholar 

  13. Barger LK, Flynn-Evans EE, Kubey A, Walsh L, Ronda JM, Wang W, Wright Jr KP, Czeisler CA. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol. 2014;13(9):904–12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Risin D, Stepanak PC. Biomedical results of the Space Shuttle Program, Chapter 5.2. Houston, TX: NASA; 2013.

    Google Scholar 

  15. Brunner LJ, DiPiro JT, Feldman S. Antipyrine pharmacokinetics in the tail-suspended rat model. J Pharmacol Exp Ther. 1995;274(1):345–52.

    CAS  PubMed  Google Scholar 

  16. Elfstrom J, Lindgren S. Influence of bed rest on the pharmacokinetics of phenazone. Eur J Clin Pharmacol. 1978;13(5):379–83.

    Article  CAS  PubMed  Google Scholar 

  17. Baisden DL, Beven GE, Campbell MR, Charles JB, Dervay JP, Foster E, Gray GW, Hamilton DR, Holland DA, Jennings RT, Johnston SL, Jones JA, Kerwin JP, Locke J, Polk JD, Scarpa PJ, Sipes W, Stepanek J, Webb JT. Human health and performance for long-duration spaceflight. Aviat Space Environ Med. 2008;79(6):629–35.

    Article  PubMed  Google Scholar 

  18. Hamilton MT, Healy GN, Dunstan DW, Zderic TW, Owen N. Too little exercise and too much sitting: inactivity physiology and the need for new recommendations on sedentary behavior. Curr Cardiovasc Risk Rep. 2008;2(4):292–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. NASA Technical Report. Vision Impairment and Intracranial Pressure (VIIP)—2011, TP 20110014672.

    Google Scholar 

  20. Putcha L, Berens KL, Marshburn TH, Ortega HJ, Billica RD. Pharmaceutical use by US astronauts on space shuttle missions. Aviat Space Environ Med. 1999;70(7):705–8.

    CAS  PubMed  Google Scholar 

  21. Bungo MW, Charles JB, Johnson Jr PC. Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat Space Environ Med. 1985;56(10):985–90.

    CAS  PubMed  Google Scholar 

  22. Leach CS, Rambaut PC. Endocrine responses in long-duration manned space flight. Acta Astronaut. 1975;2(1–2):115–27.

    Article  CAS  PubMed  Google Scholar 

  23. Rambaut PC, Smith Jr MC, Leach CS, Whedon GD, Reid J. Nutrition and responses to zero gravity. Fed Proc. 1977;36(5):1678–82.

    CAS  PubMed  Google Scholar 

  24. Thornton WE, Rummel JA. Muscular deconditioning and its prevention in space flight. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC: US Government Printing Office; 1977. p. 191–7. NASA SP-377.

    Google Scholar 

  25. Winne D. Influence of blood flow on intestinal absorption of xenobiotics. Pharmacology. 1980;21(1):1.

    Article  CAS  PubMed  Google Scholar 

  26. Nimmo WS, Prescott LF. The influence of posture on paracetamol absorption. Br J Clin Pharmacol. 1978;5(4):348–9.

    Article  CAS  PubMed Central  Google Scholar 

  27. Karasov WH, Diamond JM. Adaptation of intestinal nutrient transport. In: Johnson LR, editor. Physiology of the GI tract. New York: Raven; 1987. p. 1489–97.

    Google Scholar 

  28. Smirnov KV. Role of gravitational factor in formation of changes in gastrointestinal system. Fiziol Zh SSSR Im I M Sechenova. 1986;72(4):484–9.

    CAS  PubMed  Google Scholar 

  29. Nicholl CG, Polak JM, Bloom SR. The hormonal regulation of food intake, digestion, and absorption. Annu Rev Nutr. 1985;5:213–39.

    Article  CAS  PubMed  Google Scholar 

  30. Holgate AM, Read NW. Relationship between small bowel transit time and absorption of a solid meal, influence of metachlorpromide, magnesium sulfate, and lactulose. Dig Dis Sci. 1983;28(9):812–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lutwak L, Whedon GD, LaChance PH, Reid JM, Lipscomb HS. Mineral, electrolyte and nitrogen balance studies of the Gemini-VII 14-day orbital space flight. J Clin Endocrinol. 1969;29(9):1140–56.

    Article  CAS  Google Scholar 

  32. Tietze KJ, Putcha L. Factors affecting drug bioavailability in space. J Clin Pharmacol. 1994;34(6):671–6.

    Article  CAS  PubMed  Google Scholar 

  33. O’Hara AM, Shanahan F. Gut microbiota: mining for therapeutic potential. Clin Gastroenterol Hepatol. 2007;5(3):274–84.

    Article  PubMed  Google Scholar 

  34. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455(7216):1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Vliet MJ, Harmsen HJM, de Bont ESJM, Tissing WJE. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog. 2010;6(5):e1000879.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–9.

    Article  PubMed  Google Scholar 

  37. Nefedov YG, Shilov VM, Koustantinova IV, Zaloguev SN. Microbiological and immunological aspects of extended manned space flights. Life Sci Space Res. 1971;9:11–6.

    CAS  PubMed  Google Scholar 

  38. Ilyin VK. Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital stations. Acta Astronaut. 2005;56(9–12):839–50.

    Article  CAS  PubMed  Google Scholar 

  39. Taylor GR. Recovery of medically important microorganisms from Apollo astronauts. Aerospace Med. 1974;45(8):824–82.

    CAS  PubMed  Google Scholar 

  40. Ladas SD, Latoulis C, Giannopoulou H, et al. Reproducible lactulose hydrogen breath test as a measure of mouth-to-cecum transit time. Dig Dis Sci. 1989;34(6):919–24.

    Article  CAS  PubMed  Google Scholar 

  41. Vanvaljk M, Sommers DK, Steiyn AGW. Evaluation of gastrointestinal motility using the hydrogen breath test. Br J Clin Pharmacol. 1985;20(5):479–81.

    Article  Google Scholar 

  42. Sousa T, Paterson R, Moore V, et al. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 2008;363(1–2):1–25.

    Article  CAS  PubMed  Google Scholar 

  43. Minocha A, Siddiqi S, Rahal PS, Vogel RL. Helicobacter pylori is associated with alterations in intestinal gas profile among patients with nonulcer dyspepsia. Dig Dis Sci. 1994;39(8):1613–7.

    Article  CAS  PubMed  Google Scholar 

  44. Grigoriev AI, Bugrov SA, Bogomolov VV, et al. Preliminary medical results of the Mir year-long mission. Acta Astronaut. 1991;23:1–8.

    Article  CAS  PubMed  Google Scholar 

  45. Merrill Jr AH, Wang E, Jones DP, Hargrove JL. Hepatic function in rats after spaceflight: effects on lipids, glycogen, and enzymes. Am J Physiol. 1987;252(2 Pt 2):R222–6.

    CAS  PubMed  Google Scholar 

  46. Grainger SL, Keeling PW, Brown IM, Marigold JH, Thompson RP. Clearance and noninvasive determination of the hepatic extraction of indocyanine green in baboons and man. Clin Sci (Lond). 1983;64(2):207–12.

    Article  CAS  Google Scholar 

  47. Vessell ES. Noninvasive assessment in vivo of hepatic drug metabolism in health and disease. Ann N Y Acad Sci. 1984;428:293–307.

    Article  Google Scholar 

  48. Putcha L, Cintrón NM, Vanderploeg JM, Chen Y, Habis J, Adler J. Effect of antiorthostatic bed rest on hepatic blood flow in man. Aviat Space Environ Med. 1988;59(4):306–8.

    CAS  PubMed  Google Scholar 

  49. Wood CD, Manno JE, Manno BR, Redetzki HM, Wood MJ, Mims ME. Evaluation of antimotion-sickness drug side effects on performance. Aviat Space Environ Med. 1985;56(4):310–6.

    CAS  PubMed  Google Scholar 

  50. Putcha L, Cintron NM, Vanderploeg JM, Chen Y, Dardano J. Comparative profiles of acetaminophen in plasma and saliva of normal subjects. Presented at the World Conferences on Clinical Pharmacology and Therapeutics; Aug 1986; Stockholm, Sweden.

    Google Scholar 

  51. Kates RE, Harapat SR, Keefe DLD, Goldwater D, Harrison DC. Influence of prolonged recumbency on drug disposition. Clin Pharmacol Ther. 1980;28(5):624–8.

    Article  CAS  PubMed  Google Scholar 

  52. Rumble RH, Roberts MS, Scott AR. The effects of posture on the pharmacokinetics of intramuscular benzylpenicillin. Eur J Clin Pharmacol. 1988;33(6):629–35.

    Article  CAS  PubMed  Google Scholar 

  53. Putcha L, Cintron NM, Vanderploeg JM. Pharmacokinetics of scopolamine in normal subjects placed on antiorthostatic bed rest. Presented at the Annual Meeting of the Aerospace Medical Association; May 1989; Washington, DC.

    Google Scholar 

  54. Putcha L, Tietze KJ, Bourne DW, Parise CM, Hunter RP, Cintron NM. Bioavailability of oral scopolamine in normal subjects. J Pharm Sci. 1996;85(5):899–902.

    Article  CAS  PubMed  Google Scholar 

  55. Wu L, Boyd JL, Daniels V, Wang Z, Chow DS, Putcha L. Dose escalation pharmacokinetics of intranasal scopolamine gel formulation. J Clin Pharmacol. 2015;55(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  56. Ramanathan R, Geary RS, Bourne DW, Putcha L. Bioavailability of intranasal promethazine dosage forms in dogs. Pharmacol Res. 1998;38(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  57. Ball JR, Evans CH. Safe Passage: Astronaut Care for Exploration Missions. Washington DC: National Academy Press; 2001.

    Google Scholar 

  58. Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007;12(6):738–47.

    Article  CAS  PubMed  Google Scholar 

  59. Ghosh SP, Perkins MW, Hieber K, Kulkarni S, Kao TC, Reddy EP, Reddy MV, Maniar M, Seed T, Kumar KS. Radiation protection by a new chemical entity, Ex-Rad™: efficacy and mechanisms. Radiat Res. 2009;171(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  60. Krivokrysenko VI, Shakhov AN, Singh VK, et al. Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy as a medical radiation countermeasure. J Pharmacol Exp Ther. 2012;343(2):497–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taylor PW, Bernal P, Zelmer A. Modification of the bacterial phenotype as an approach to counter the emergence of multidrug-resistant pathogens. In: Bonilla AR, Muniz KP, editors. Antibiotic resistance: causes and risk factors, mechanisms and alternatives. Hauppauge, NY: Nova Science; 2009. p. 43–78.

    Google Scholar 

  62. Taylor PW. Alternative natural sources for a new generation of antibacterial agents. Int J Antimicrob Agents. 2013;42(3):195–201.

    Google Scholar 

  63. Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161(2):264–73.

    Google Scholar 

  64. Kommanaboyina B, Rhodes CT. Trends in stability testing, with emphasis on stability during distribution and storage. Drug Dev Ind Pharm. 1999;25(7):857–68.

    Article  CAS  PubMed  Google Scholar 

  65. Taylor PW, Keenan MHJ. Pharmaceutical quality of generic isotretinoin products, compared to Roaccutane. Curr Med Res Opin. 2006;22(3):603–15.

    Article  CAS  PubMed  Google Scholar 

  66. Carstensen JT, Rhodes CT. Drug stability: principles and practices. New York: Marcel Dekker, Inc; 2000.

    Google Scholar 

  67. WHO Expert Committee on specifications for pharmaceutical preparations. World Health Organ Tech Rep Ser. 1996;863:1–194.

    Google Scholar 

  68. Du J, Gatlin K, Vaksman Z, Berens K, Putcha L. Stability of pharmaceuticals during space flight. AAPS Pharm Sci. 2002;4:T3153.

    Google Scholar 

  69. Ofner CM, Schnaare RL, Schwartz JB. Oral aqueous suspensions. In: Lieberman HA, Rieger MM, Banker GS, editors. Pharmaceutical dosage forms: disperse systems, vol. 2. New York: Marcel Dekker, Inc; 1996. p. 149–80.

    Google Scholar 

  70. Tryggvason BV, Redden RF, Herring RA, et al. The vibration environment of the International Space Station: its significance to fluid-based experiments. Acta Astronaut. 2001;48(2):59–70.

    Article  Google Scholar 

  71. Matsumoto M, Kojima K, Nagano H, Matsubara S, Yokota T. Photostability and biological activity of fluoroquinolones substituted at the 8 position after UV radiation. Antimicrob Agents Chemother. 1992;36(8):1715–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Parks OW. Photodegradation of sulfa drugs by fluorescent light. J Assoc Off Anal Chem. 1985;68(6):1232–4.

    CAS  PubMed  Google Scholar 

  73. Benton ER, Benton EV. Space radiation dosimetry in low-Earth orbit and beyond. Nucl Instrum Methods Phys Res B. 2001;184(1–2):255–94.

    Article  CAS  PubMed  Google Scholar 

  74. Badhwar GD. The radiation environment in low-Earth orbit. Radiat Res. 1997;148(5 Suppl):S3–10.

    Article  CAS  PubMed  Google Scholar 

  75. Benton ER, Benton EV, Frank AL. Passive dosimetry aboard the Mir orbital station: internal measurements. Radiat Meas. 2002;35(5):439–55.

    Article  CAS  PubMed  Google Scholar 

  76. National Council on Radiation Protection and Measurement (NCRP) Scientific Committee. Report no. 098—Guidance on Radiation Received in Space. Bethesda: NCRP Publications; 1989.

    Google Scholar 

  77. Maggi L, Segale L, Ochoa Machiste E, et al. Chemical and physical stability of hydroxypropylmethylcellulose matrices containing diltiazem hydrochloride after gamma irradiation. J Pharm Sci. 2003;92(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  78. Gandia P, Saivin S, Houin G. The influence of weightlessness on pharmacokinetics. Fundam Clin Pharmacol. 2005;19(6):625–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Taylor PhD, MIBiol .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Ch 12 Clinical Pharmacology and Therapeutics (PDF 2993 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Putcha, L., Taylor, P.W., Daniels, V.R., Pool, S.L. (2016). Clinical Pharmacology and Therapeutics. In: Nicogossian, A., Williams, R., Huntoon, C., Doarn, C., Polk, J., Schneider, V. (eds) Space Physiology and Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6652-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6652-3_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6650-9

  • Online ISBN: 978-1-4939-6652-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics