Skip to main content

SNP Arrays for Species Identification in Salmonids

  • Protocol
  • First Online:
Book cover Marine Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1452))

Abstract

The use of SNP genotyping microarrays, developed in one species to analyze a closely related species for which genomic sequence information is scarce, enables the rapid development of a genomic resource (SNP information) without the need to develop new species-specific markers. Using large numbers of microarray SNPs offers the best chance to detect informative markers in nontarget species, markers that can very often be assayed using a lower throughput platform as is described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourret V, Kent MP, Primmer CR, Vasemägi A, Karlsson S, Hindar K, McGinnity P, Varspoor E, Bernatchez L, Lien S (2013) SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Mol Ecol 22(3):532–551. doi:10.1111/mec.12003

    Article  CAS  PubMed  Google Scholar 

  2. Kochzius M, Nölte M, Weber H, Silkenbeumer N, Hjörleifsdottir S, Hreggvidsson GO, Marteinsson V, Kappel K, Planes S, Tinti F, Magoulas A, Garcia VE, Turan C, Hervet C, Campo FD, Antoniou A, Landi M, Blohm D (2008) DNA microarrays for identifying fishes. Mar Biotechnol 10(2):207–217. doi:10.1007/s10126-007-9068-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martinsohn JT, Ogden R (2009) FishPopTrace Consortium. FishPopTrace—developing SNP-based population genetic assignment methods to investigate illegal fishing. Forensic Sci Int-Gen 2(1):294–296. doi:10.1016/j.fsigss.2009.08.108

    Article  Google Scholar 

  4. Dominik S, Henshall JM, Kube PD, King H, Lien S, Kent MP, Elliott NG (2010) Evaluation of an Atlantic salmon SNP chip as a genomic tool for the application in a Tasmanian Atlantic salmon (Salmo salar) breeding population. Aquaculture 308(Suppl 1):56–61. doi:10.1016/j.aquaculture.2010.05.038

    Article  Google Scholar 

  5. Gidskehaug L, Kent M, Hayes BJ, Lien S (2011) Genotype calling and mapping of multisite variants using an Atlantic salmon iSelect SNP array. Bioinformatics 27(3):303–310. doi:10.1093/bioinformatics/btq673

    Article  CAS  PubMed  Google Scholar 

  6. Karlsson S, Moen T, Lien S, Glover KA, Hindar K (2011) Generic genetic differences between farmed and wild Atlantic salmon identified from a 7K SNP-chip. Mol Ecol Res 11(Suppl 1):247–253. doi:10.1111/j.1755-0998.2010.02959.x

    Article  Google Scholar 

  7. Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, Omholt SW, Kent MP (2011) A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homologies and striking differences in sex-specific recombination patterns. BMC Genomics 12:615–625. doi:10.1186/1471-2164-12-615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brenna-Hansen S, Jieying I, Kent PM, Boulding EG, Domink S, Davidson WS, Lien S (2012) Chromosomal differences between European and North American Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hybridization analysis. BMC Genomics 13:432–444. doi:10.1186/1471-2164-13-432

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gutierrez AP, Lubieniecki KP, Davidson EA, Lien S, Kent MP, Fukui S, Withler RE, Davidson WS (2012) Genetic mapping of quantitative trait loci (QTL) for body-weight in Atlantic salmon (Salmo salar) using a 6.5 K SNP array. Aquaculture 358–359:61–70. doi:10.1016/j.aquaculture.2012.06.017

    Article  Google Scholar 

  10. Johnston SE, Lindqvist M, Niemelä E, Orell P, Erkinaro J, Kent MP, Lien S, Vähä J-P, Vasemägi A, Primmer CR (2013) Fish scales and SNP chips: SNP genotyping and allele frequency estimation in individual and pooled DNA from historical samples of Atlantic salmon (Salmo salar). BMC Genomics 14:439–451. doi:10.1186/1471-2164-14-439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perrier C, Bourret V, Kent MP, Bernatchez L (2013) Parallel and nonparallel genome-wide divergence among replicate population pairs of freshwater and anadromous Atlantic salmon. Mol Ecol 22(22):5577–5593. doi:10.1111/mec.12500

    Article  CAS  PubMed  Google Scholar 

  12. Bourret V, Dionne M, Kent MP, Lien S, Bernatchez L (2013) Landscape genomics in Atlantic salmon (Salmo salar): searching for gene-environment interactions driving local adaptation. Evolution 67(12):3469–3487. doi:10.1111/evo.12139

    Article  Google Scholar 

  13. Ozerov M, Vasemägi A, Wennevik V, Niemelä E, Prusov S, Kent MP, Vähä J-P (2013) Cost-effective genome-wide estimation of allele frequencies from pooled DNA in Atlantic salmon (Salmo salar L.). BMC Genomics 14:12–23. doi:10.1186/1471-2164-14-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glover KA, Pertoldi C, Besnier F, Wennevik V, Kent MP, Skaala Ø (2013) Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genet 14:74–92. doi:10.1186/1471-2156-14-74

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sodeland M, Gaarder M, Moen T, Thomassen M, Kjøglum S, Kent M, Lien S (2013) Genome-wide association testing reveals quantitative trait loci for fillet texture and fat content in Atlantic salmon. Aquaculture 408–409:169–174. doi:10.1016/j.aquaculture.2013.05.029

    Article  Google Scholar 

  16. Johnston SE, Orell P, Pritchard VL, Kent MP, Lien S, Niemelä E, Erkinaro J, Primmer CR (2014) Genome-wide SNP analysis reveals a genetic basis for sea–age variation in a wild population of Atlantic salmon (Salmo salar). Mol Ecol 23(14):3452–3468. doi:10.1111/mec.12832

    Article  CAS  PubMed  Google Scholar 

  17. Sandlund OT, Karlsson S, Thorstad EB, Berg OK, Kent MP, Norum ICJ, Hindar K (2014) Spatial and temporal genetic structure of a river-resident Atlantic salmon (Salmo salar) after millennia of isolation. Ecol Evol 4(9):1538–1554. doi:10.1002/ece3.1040

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zueva KJ, Lumme J, Veselov AE, Kent MP, Lien S, Primmer CR (2014) Footprints of directional selection in wild Atlantic salmon populations: evidence for parasite-driven evolution? PLoS One 9(3), e91672. doi:10.1371/journal.pone.0091672

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shen R, Fan JB, Campbell D, Chang WH, Chen J, Doucet D, Yeakley J, Bibikova M, Garcia EW, McBride C, Steemers F, Garcia F, Kermani BG, Gunderson K, Oliphant A (2005) High-throughput SNP genotyping on universal bead arrays. Mutat Res 573(1-2):70–82. doi:10.1016/j.mrfmmm.2004.07.022

    Article  CAS  PubMed  Google Scholar 

  20. Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray™ platform. Biotechnol J 2(1):41–49. doi:10.1002/biot.200600213

    Article  CAS  PubMed  Google Scholar 

  21. Smith MJ, Pascal CE, Grauvogel Z, Habicht C, Seeb JE, Seeb LW (2011) Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales. Mol Ecol Resour 11(Suppl 1):268–277. doi:10.1111/j.1755-0998.2010.02965.x

    Article  PubMed  Google Scholar 

  22. http://support.illumina.com/content/dam/illumina-support/documents/myillumina/05340b1f-c179-495d-b790-fa91ecbb6ff2/inf_hd_super_assay_ug_11322427_revc.pdf

  23. Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen MM, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, Mcbride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78. doi:10.1101/sqb.2003.68.69

    Article  CAS  PubMed  Google Scholar 

  24. Oliphant A, Barker DL, Stuelpnagel JR, Chee MS (2002) BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques 32:56–61

    Google Scholar 

  25. Illumina (2010) Infinium genotyping data analysis. Technical Note: Illumina DNA analysis. Publication Number 970-2007-005, January 2010

    Google Scholar 

  26. Guo SW, Thompson NEA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  27. Slatkin M, Voelm L (1991) FST in a hierarchical island model. Genetics 127(3):627–629

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  29. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Article  Google Scholar 

  30. Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Press, Sunderland, MA, 376 pp

    Google Scholar 

  31. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  32. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  34. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2000) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171. 1996–2004. Université de Montpellier II, Montpellier

    Google Scholar 

  35. Benzécri JP (1992) Correspondence analysis handbook. Statistics, textbooks and monographs, Vol 225. Marcel Dekker, New York, NY, p 688

    Google Scholar 

  36. Kalinowski ST, Manlove KR, Taper ML (2007) ONCOR: a computer program for genetic stock identification. Department of Ecology, Montana State University, Bozeman, MT, http://www.montana.edu/kalinowski/Software/ONCOR.htm

  37. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A 94(17):9197–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Drywa A, Poćwierz-Kotus A, Dobosz S, Kent MP, Lien S, Wenne R (2014) Identification of multiple diagnostic SNP loci for differentiation of three salmonid species using SNP-arrays. Mar Genomics 15:5–6. doi:10.1016/j.margen.2014.03.003

    Article  PubMed  Google Scholar 

  39. Drywa A, Poćwierz-Kotus A, Wąs A, Dobosz S, Kent MP, Lien S, Bernaś R, Wenne R (2013) Genotyping of two populations of Southern Baltic sea trout Salmo trutta m. trutta using an Atlantic salmon derived SNP-array. Mar Genomics 9:25–32. doi:10.1016/j.margen.2012.08.001

    Article  PubMed  Google Scholar 

  40. Poćwierz-Kotus A, Bernaś R, Dębowski P, Kent MP, Lien S, Kesler M, Titov S, Leliuna E, Jespersen H, Drywa A, Wenne R (2014) Genetic differentiation of southeast Baltic populations of sea trout inferred from single nucleotide polymorphisms. Anim Genet 45(1):96–104. doi:10.1111/age.12095

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded from statutory topic IV.1. in the Institute of Oceanology PAS and project No. 397/N-cGRASP/2009/0 of the Ministry of Science and Higher Education in Poland to R.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Wenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wenne, R., Drywa, A., Kent, M., Sundsaasen, K.K., Lien, S. (2016). SNP Arrays for Species Identification in Salmonids. In: Bourlat, S. (eds) Marine Genomics. Methods in Molecular Biology, vol 1452. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3774-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3774-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3772-1

  • Online ISBN: 978-1-4939-3774-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics