Skip to main content

Hapten-Binding Bispecific Antibodies for the Targeted Delivery of SiRNA and SiRNA-Containing Nanoparticles

  • Protocol
SiRNA Delivery Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1364))

Abstract

Hapten-binding bispecific antibodies (bsAbs) are effective and versatile tools for targeting diverse payloads, including siRNAs, to specific cells and tissues. In this chapter, we provide examples for successful SiRNA delivery using this powerful targeting platform. We further provide protocols for designing and producing bsAbs, for combining bsAbs with SiRNA into functional complexes, and achieving specific mRNA knockdown in cells by using these functional complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  2. Kanasty R, Dorkin JR, Vegas A et al (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977

    Article  CAS  PubMed  Google Scholar 

  3. Akinc A, Querbes W, De S et al (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 18:1357–1364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bhattarai SR, Muthuswamy E, Wani A et al (2010) Enhanced gene and siRNA delivery by polycation-modified mesoporous silica nanoparticles loaded with chloroquine. Pharm Res 27:2556–2568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lee SK, Siefert A, Beloor J et al (2012) Cell-specific siRNA delivery by peptides and antibodies. Methods Enzymol 502:91–122

    Article  CAS  PubMed  Google Scholar 

  6. Leus NG, Talman EG, Ramana P et al (2014) Effective siRNA delivery to inflamed primary vascular endothelial cells by anti-E-selectin and anti-VCAM-1 PEGylated SAINT-based lipoplexes. Int J Pharm 459:40–50

    Article  CAS  PubMed  Google Scholar 

  7. Semple SC, Akinc A, Chen J et al (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28:172–176

    Article  CAS  PubMed  Google Scholar 

  8. Song E, Zhu P, Lee SK et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717

    Article  CAS  PubMed  Google Scholar 

  9. Toloue MM, Ford LP (2011) Antibody targeted siRNA delivery. Methods Mol Biol 764:123–139

    Article  CAS  PubMed  Google Scholar 

  10. Yu B, Zhao X, Lee LJ et al (2009) Targeted delivery systems for oligonucleotide therapeutics. AAPS J 11:195–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zimmermann TS, Lee AC, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  CAS  PubMed  Google Scholar 

  12. Beck A, Wurch T, Bailly C et al (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    Article  CAS  PubMed  Google Scholar 

  13. Weidle UH, Tiefenthaler G, Weiss EH et al (2013) The intriguing options of multispecific antibody formats for treatment of cancer. Cancer Genomics Proteomics 10:1–18

    CAS  PubMed  Google Scholar 

  14. Metz S, Haas AK, Daub K et al (2011) Bispecific digoxigenin-binding antibodies for targeted payload delivery. Proc Natl Acad Sci U S A 108:8194–8199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Schneider B, Grote M, John M et al (2012) Targeted siRNA Delivery and mRNA knockdown mediated by bispecific digoxigenin-binding antibodies. Mol Ther Nucleic Acids 1:e46

    Article  PubMed Central  PubMed  Google Scholar 

  16. Jung SH, Pastan I, Lee B (1994) Design of interchain disulfide bonds in the framework region of the Fv fragment of the monoclonal antibody B3. Proteins 19:35–47

    Article  CAS  PubMed  Google Scholar 

  17. Reiter Y, Brinkmann U, Jung SH et al (1995) Disulfide stabilization of antibody Fv: computer predictions and experimental evaluation. Protein Eng 8:1323–1331

    Article  CAS  PubMed  Google Scholar 

  18. Reiter Y, Brinkmann U, Lee B et al (1996) Engineering antibody Fv fragments for cancer detection and therapy: disulfide-stabilized Fv fragments. Nat Biotechnol 14:1239–1245

    Article  CAS  PubMed  Google Scholar 

  19. Ridgway JB, Presta LG, Carter P (1996) ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 9:617–621

    Article  CAS  PubMed  Google Scholar 

  20. Molina MA, Codony-Servat J, Albanell J et al (2001) Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61:4744–4749

    CAS  PubMed  Google Scholar 

  21. Baselga J (2001) The EGFR as a target for anticancer therapy—focus on cetuximab. Eur J Cancer 37(Suppl 4):S16–S22

    Article  CAS  PubMed  Google Scholar 

  22. Kies MS, Harari PM (2002) Cetuximab (Imclone/Merck/Bristol-Myers Squibb). Curr Opin Investig Drugs 3:1092–1100

    CAS  PubMed  Google Scholar 

  23. Chitnis MM, Yuen JS, Protheroe AS et al (2008) The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 14:6364–6370

    Article  CAS  PubMed  Google Scholar 

  24. Mansfield E, Amlot P, Pastan I et al (1997) Recombinant RFB4 immunotoxins exhibit potent cytotoxic activity for CD22-bearing cells and tumors. Blood 90:2020–2026

    CAS  PubMed  Google Scholar 

  25. Brinkmann U, Pai LH, Fitzgerald DJ et al (1991) B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci U S A 88:8616–8620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pastan I, Lovelace ET, Gallo MG et al (1991) Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomas. Cancer Res 51:3781–3787

    CAS  PubMed  Google Scholar 

  27. Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  CAS  PubMed  Google Scholar 

  28. Chan DP, Deleavey GF, Owen SC et al (2013) Click conjugated polymeric immuno-nanoparticles for targeted siRNA and antisense oligonucleotide delivery. Biomaterials 34:8408–8415

    Article  CAS  PubMed  Google Scholar 

  29. Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 5:77. doi:10.3389/fphar.2014.00077

    Article  PubMed Central  PubMed  Google Scholar 

  30. Malhotra M, Tomaro-Duchesneau C, Saha S et al (2013) Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int J Nanomedicine 8:2041–2052

    Article  PubMed Central  PubMed  Google Scholar 

  31. Miele E, Spinelli GP, Miele E et al (2012) Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine 7:3637–3657

    PubMed Central  PubMed  Google Scholar 

  32. Rozema DB, Lewis DL, Wakefield DH et al (2007) Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 104:12982–12987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Tiera MJ, Shi Q, Barbosa HF et al (2013) Polymeric systems as nanodevices for siRNA delivery. Curr Gene Ther 13:358–369

    Article  CAS  PubMed  Google Scholar 

  34. Wolff JA, Rozema DB (2008) Breaking the bonds: non-viral vectors become chemically dynamic. Mol Ther 16:8–15

    Article  CAS  PubMed  Google Scholar 

  35. Wong SC, Klein JJ, Hamilton HL et al (2012) Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther 22:380–390

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Akinc A, Goldberg M, Qin J et al (2009) Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 17:872–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sou K, Endo T, Takeoka S et al (2000) Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles. Bioconjug Chem 11:372–379

    Article  CAS  PubMed  Google Scholar 

  38. Tao W, Davide JP, Cai M et al (2010) Noninvasive imaging of lipid nanoparticle-mediated systemic delivery of small-interfering RNA to the liver. Mol Ther 18:1657–1666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19:89–102

    Article  CAS  PubMed  Google Scholar 

  40. Grote M, Haas AK, Klein C et al (2012) Bispecific antibody derivatives based on full-length IgG formats. Methods Mol Biol 901:247–263

    Article  CAS  PubMed  Google Scholar 

  41. Haas AK, Mayer K, Brinkmann U (2012) Generation of fluorescent IgG fusion proteins in mammalian cells. Methods Mol Biol 901:265–276

    Article  CAS  PubMed  Google Scholar 

  42. Aigner A (2008) Cellular delivery in vivo of siRNA-based therapeutics. Curr Pharm Des 14:3603–3619

    Article  CAS  PubMed  Google Scholar 

  43. Leucuta SE (2013) Systemic and biophase bioavailability and pharmacokinetics of nanoparticulate drug delivery systems. Curr Drug Deliv 10:208–240

    Article  CAS  PubMed  Google Scholar 

  44. Burris TP, Pelton PD, Zhou L et al (1999) A novel method for analysis of nuclear receptor function at natural promoters: peroxisome proliferator-activated receptor gamma agonist actions on aP2 gene expression detected using branched DNA messenger RNA quantitation. Mol Endocrinol 13:410–417

    CAS  PubMed  Google Scholar 

  45. Collins ML, Irvine B, Tyner D et al (1997) A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml. Nucleic Acids Res 25:2979–2984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Brinkmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thorey, I.S., Grote, M., Mayer, K., Brinkmann, U. (2016). Hapten-Binding Bispecific Antibodies for the Targeted Delivery of SiRNA and SiRNA-Containing Nanoparticles. In: Shum, K., Rossi, J. (eds) SiRNA Delivery Methods. Methods in Molecular Biology, vol 1364. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3112-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3112-5_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3111-8

  • Online ISBN: 978-1-4939-3112-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics