Skip to main content

A Historical Perspective on Bacterial Persistence

  • Protocol
Book cover Bacterial Persistence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1333))

Abstract

Bactericidal antibiotics quickly kill the majority of a bacterial population. However, a small fraction of cells typically survive through entering the so-called persister state. Persister cells are increasingly being viewed as a major cause of the recurrence of chronic infectious disease and could be an important factor in the emergence of antibiotic resistance. The phenomenon of persistence was first described in the 1940s, but remained poorly understood for decades afterwards. Only recently, a series of breakthrough discoveries has started to shed light on persister physiology and the molecular and genetic underpinnings of persister formation. We here provide an overview of the key studies that have paved the way for the current boom in persistence research, with a special focus on the technological and methodological advances that have enabled this progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hobby GL, Meyer K, Chaffee E (1942) Observations on the mechanism of action of penicillin. Exp Biol Med 50(2):281–285

    Article  CAS  Google Scholar 

  2. Bigger JW (1944) Treatment of staphylococcal infections with penicillin. Lancet 244:497–500

    Article  Google Scholar 

  3. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  4. Moyed HS, Bertrand KP (1983) hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155(2):768–775

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Moyed HS, Broderick SH (1986) Molecular cloning and expression of hipA, a gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 166(2):399–403

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186(24):8172–8180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Correia FF, D'Onofrio A, Rejtar T, Li L, Karger BL, Makarova K, Koonin EV, Lewis K (2006) Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J Bacteriol 188(24):8360–8367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hansen S, Vulic M, Min J, Yen TJ, Schumacher MA, Brennan RG, Lewis K (2012) Regulation of the Escherichia coli HipBA toxin-antitoxin system by proteolysis. PLoS One 7(6):e39185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G (2013) HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun 4:3001

    Article  PubMed  Google Scholar 

  10. Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52(2):248–254

    Article  CAS  PubMed  Google Scholar 

  11. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625

    Article  CAS  PubMed  Google Scholar 

  12. Yamaguchi Y, Inouye M (2011) Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Nat Rev Microbiol 9(11):779–790

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79

    Article  CAS  PubMed  Google Scholar 

  14. Williams JJ, Hergenrother PJ (2012) Artificial activation of toxin-antitoxin systems as an antibacterial strategy. Trends Microbiol 20(6):291–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kim Y, Wang X, Zhang XS, Grigoriu S, Page R, Peti W, Wood TK (2010) Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol 12(5):1105–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kim Y, Wood TK (2010) Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 391(1):209–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cheng HY, Soo VW, Islam S, McAnulty MJ, Benedik MJ, Wood TK (2013) Toxin GhoT of the GhoT/GhoS TA system damages the cell membrane to reduce ATP and to reduce growth under stress. Environ Microbiol 16(6):1741–1754

    Article  Google Scholar 

  18. Dörr T, Lewis K, Vulić M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5(12):e1000760

    Article  PubMed Central  PubMed  Google Scholar 

  19. Dörr T, Vulić M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8(2):e1000317

    Article  PubMed Central  PubMed  Google Scholar 

  20. Tripathi A, Dewan PC, Siddique SA, Varadarajan R (2014) MazF-induced growth inhibition and persister generation in Escherichia coli. J Biol Chem 289(7):4191–4205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Harrison JJ, Wade WD, Akierman S, Vacchi-Suzzi C, Stremick CA, Turner RJ, Ceri H (2009) The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53(6):2253–2258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343(6167):204–208

    Article  CAS  PubMed  Google Scholar 

  23. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci U S A 108(32):13206–13211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fauvart M, De Groote VN, Michiels J (2011) Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60(Pt 6):699–709

    Article  PubMed  Google Scholar 

  25. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45(4):999–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183(23):6746–6751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  28. Levin BR, Rozen DE (2006) Non-inherited antibiotic resistance. Nat Rev Microbiol 4(7):556–562

    Article  CAS  PubMed  Google Scholar 

  29. LaFleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54(1):39–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192(23):6191–6199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13(6):632–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fu Y, Zhu M, Xing J (2010) Resonant activation: a strategy against bacterial persistence. Phys Biol 7(1):16013

    Article  PubMed  Google Scholar 

  33. Niepa TH, Gilbert JL, Ren D (2012) Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin. Biomaterials 33(30):7356–7365

    Article  CAS  PubMed  Google Scholar 

  34. Manuel J, Zhanel GG, de Kievit T (2010) Cadaverine suppresses persistence to carboxypenicillins in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 54(12):5173–5179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473(7346):216–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Barraud N, Buson A, Jarolimek W, Rice SA (2013) Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One 8(12):e84220

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6(12):1543–1575

    Article  Google Scholar 

  38. Pan J, Bahar AA, Syed H, Ren D (2012) Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3- methylfuran-2(5H)-one. PLoS One 7(9):e45778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Pan J, Ren D (2013) Structural effects on persister control by brominated furanones. Bioorg Med Chem Lett 23(24):6559–6562

    Article  CAS  PubMed  Google Scholar 

  40. Pan J, Song F, Ren D (2013) Controlling persister cells of Pseudomonas aeruginosa PDO300 by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. Bioorg Med Chem Lett 23(16):4648–4651

    Article  CAS  PubMed  Google Scholar 

  41. Pan J, Xie X, Tian W, Bahar AA, Lin N, Song F, An J, Ren D (2013) (Z)-4-bromo-5- (bromomethylene)-3-methylfuran-2(5H)-one sensitizes Escherichia coli persister cells to antibiotics. Appl Microbiol Biotechnol 97(20):9145–9154

    Article  CAS  PubMed  Google Scholar 

  42. Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503(7476):365–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

    CAS  PubMed  Google Scholar 

  44. Hansen S, Lewis K, Vulić M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52(8):2718–2726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. De Groote VN, Verstraeten N, Fauvart M, Kint CI, Cornelis P, Michiels J (2009) Identification of novel persistence genes in Pseudomonas aeruginosa in the combat against emerging antimicrobial resistance. Commun Agric Appl Biol Sci 74(4):51–56

    PubMed  Google Scholar 

  46. Spoering AL, Vulić M, Lewis K (2006) GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188(14):5136–5144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Gefen O, Gabay C, Mumcuoglu M, Engel G, Balaban NQ (2008) Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria. Proc Natl Acad Sci U S A 105(16):6145–6149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Vega NM, Allison KR, Khalil AS, Collins JJ (2012) Signaling-mediated bacterial persister formation. Nat Chem Biol 8(5):431–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154(5):1140–1150

    Article  CAS  PubMed  Google Scholar 

  50. Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C, Shoresh N, Biham O, Balaban NQ (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci U S A 107(28):12541–12546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Jõers A, Kaldalu N, Tenson T (2010) The frequency of persisters in Escherichia coli reflects the kinetics of wake-up from dormancy. J Bacteriol 192(13):3379–3384

    Article  PubMed Central  PubMed  Google Scholar 

  52. Orman MA, Brynildsen MP (2013) Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 57(7):3230–3239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Helaine S, Thompson JA, Watson KG, Liu M, Boyle C, Holden DW (2010) Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A 107(8):3746–3751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Claudi B, Sprote P, Chirkova A, Personnic N, Zankl J, Schurmann N, Schmidt A, Bumann D (2014) Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158(4):722–733

    Article  CAS  PubMed  Google Scholar 

  55. Keren I, Minami S, Rubin E, Lewis K (2011) Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2(3):e00100–e00111

    Article  PubMed Central  PubMed  Google Scholar 

  56. Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53

    Article  PubMed Central  PubMed  Google Scholar 

  57. Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ (2014) Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513(7518):418–421

    Article  CAS  PubMed  Google Scholar 

  58. Levin-Reisman I, Gefen O, Fridman O, Ronin I, Shwa D, Sheftel H, Balaban NQ (2010) Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nat Methods 7(9):737–739

    Article  CAS  PubMed  Google Scholar 

  59. Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169(4):1807–1814

    Article  PubMed Central  PubMed  Google Scholar 

  60. Cogan NG (2007) Incorporating toxin hypothesis into a mathematical model of persister formation and dynamics. J Theor Biol 248(2):340–349

    Article  CAS  PubMed  Google Scholar 

  61. Gardner A, West SA, Griffin AS (2007) Is bacterial persistence a social trait? PLoS One 2(8):e752

    Article  PubMed Central  PubMed  Google Scholar 

  62. Klapper I, Gilbert P, Ayati BP, Dockery J, Stewart PS (2007) Senescence can explain microbial persistence. Microbiology 153(Pt 11):3623–3630

    Article  CAS  PubMed  Google Scholar 

  63. Gefen O, Balaban NQ (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 33(4):704–717

    Article  CAS  PubMed  Google Scholar 

  64. Hemsley CM, Luo JX, Andreae CA, Butler CS, Soyer OS, Titball RW (2014) Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration. Antimicrob Agents Chemother 58(10):5775–5783

    Article  PubMed Central  PubMed  Google Scholar 

  65. Gelens L, Hill L, Vandervelde A, Danckaert J, Loris R (2013) A general model for toxin-antitoxin module dynamics can explain persister cell formation in E. coli. PLoS Comput Biol 9(8):e1003190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lou C, Li Z, Ouyang Q (2008) A molecular model for persister in E. coli. J Theor Biol 255(2):205–209

    Article  CAS  PubMed  Google Scholar 

  67. Veening JW, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210

    Article  CAS  PubMed  Google Scholar 

  68. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334(6058):982–986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD (2013) Dynamic persistence of antibiotic-stressed mycobacteria. Science 339(6115):91–95

    Article  CAS  PubMed  Google Scholar 

  70. Amato SM, Orman MA, Brynildsen MP (2013) Metabolic control of persister formation in Escherichia coli. Mol Cell 50(4):475–487

    Article  CAS  PubMed  Google Scholar 

  71. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–18

    Article  CAS  PubMed  Google Scholar 

  72. Fraser D, Kærn M (2009) A chance at survival: gene expression noise and phenotypic diversification strategies. Mol Microbiol 71(6):1333–1340

    Article  CAS  PubMed  Google Scholar 

  73. Möker N, Dean CR, Tao J (2010) Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 192(7):1946–1955

    Article  PubMed Central  PubMed  Google Scholar 

  74. Leung V, Levesque CM (2012) A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol 194(9):2265–2274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, Holmes NE, Rhee HW, Hong JI, Hartland EL, Stinear TP, Howden BP (2010) Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog 6(6):e1000944

    Article  PubMed Central  PubMed  Google Scholar 

  76. Korch SB, Henderson TA, Hill TM (2003) Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol 50(4):1199–1213

    Article  CAS  PubMed  Google Scholar 

  77. Helaine S, Kugelberg E (2014) Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol 22(7):417–424

    Article  CAS  PubMed  Google Scholar 

  78. Maisonneuve E, Gerdes K (2014) Molecular mechanisms underlying bacterial persisters. Cell 157(3):539–548

    Article  CAS  PubMed  Google Scholar 

  79. Amato SM, Fazen CH, Henry TC, Mok WW, Orman MA, Sandvik EL, Volzing KG, Brynildsen MP (2014) The role of metabolism in bacterial persistence. Front Microbiol 5:70

    Article  PubMed Central  PubMed  Google Scholar 

  80. Prax M, Bertram R (2014) Metabolic aspects of bacterial persisters. Front Cell Infect Microbiol 4:148

    Article  PubMed Central  PubMed  Google Scholar 

  81. Kint CI, Verstraeten N, Fauvart M, Michiels J (2012) New-found fundamentals of bacterial persistence. Trends Microbiol 20(12):577–585

    Article  CAS  PubMed  Google Scholar 

  82. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141(1):69–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459(7245):428–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Glickman MS, Sawyers CL (2012) Converting cancer therapies into cures: lessons from infectious diseases. Cell 148(6):1089–1098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the lab of JM is supported by grants from KU Leuven Research Council (PF/10/010; IDO/09/010; IDO/13/008), IAP-BELSPO, FWO, and IWT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Michiels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verstraeten, N., Knapen, W., Fauvart, M., Michiels, J. (2016). A Historical Perspective on Bacterial Persistence. In: Michiels, J., Fauvart, M. (eds) Bacterial Persistence. Methods in Molecular Biology, vol 1333. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2854-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2854-5_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2853-8

  • Online ISBN: 978-1-4939-2854-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics