Skip to main content

Cochlear Implant Design Considerations

  • Chapter
  • First Online:

Abstract

The design and performance of the present-day cochlear implants are described. In broad terms, the design principles now in use include (1) representing at least most of the information that can be perceived according to place, frequency, and intensity of stimulation; (2) not making any assumptions about sounds in the environment or in particular how speech is produced or perceived; (3) minimizing electrode interactions; (4) using appropriate mapping functions and other aspects of processing to minimize perceptual distortions; and (5) presenting electric stimuli to both cochleas or presenting acoustic plus electric stimuli when possible. Applications of these principles have produced high levels of speech reception for the great majority of implant users and the first substantial restoration of a human sense using a medical intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AB:

Arthur Boothroyd (as in the AB words)

AzBio:

Arizona Biomedical Institute (as in the AzBio sentences)

BKB:

Bamford-Kowal-Bench (as in the BKB sentences)

BPF:

Band-pass filter

CI:

Cochlear implant

CIS:

Continuous interleaved sampling

CNC:

Consonant-nucleus-consonant (as in the CNC words)

CUNY:

City University of New York (as in the CUNY sentences)

EAS:

Electric and acoustic stimulation (as in combined EAS)

F0:

Fundamental frequency

HINT:

Hearing in Noise Test (as in the HINT sentences)

HSM:

Hochmair-Schulz-Moser (as in the HSM sentences)

LPF:

Low-pass filter

PTA:

Pure tone average

RF:

Radio frequency

RM ANOVA:

Repeated-measures analysis of the variance

S/N:

Speech-to-noise ratio

SEM:

Standard error of the mean

References

  • Blamey P, Artieres F, Baskent D, Bergeron F, Beynon A, Burke E, Dillier N, Dowell R, Fraysse B, Gallego S, Govaerts PJ, Green K, Huber AM, Kleine-Punte A, Maat B, Marx M, Mawman D, Mosnier I, O’Connor AF, O’Leary S, Rousset A, Schauwers K, Skarzynski H, Skarzynski PH, Sterkers O, Terranti A, Truy E, Van de Heyning P, Venail F, Vincent C, Lazard DS. Factors affecting auditory performance of postlingually deaf adults using cochlear implants: an update with 2251 patients. Audiol Neurootol. 2013;18(1):36–47.

    Article  PubMed  Google Scholar 

  • Budenz CL, Pfingst BE, Raphael Y. The use of neurotrophin therapy in the inner ear to augment cochlear implantation outcomes. Anat Rec (Hoboken). 2012;295(11):1896–908.

    Article  CAS  Google Scholar 

  • Busby PA, Tong YC, Clark GM. The perception of temporal modulations by cochlear implant patients. J Acoust Soc Am. 1993;94(1):124–31.

    Article  CAS  PubMed  Google Scholar 

  • Chua TE, Bachman M, Zeng FG. Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms. Ear Hear. 2011;32(6):679–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke JC, Tuft BW, Clinger JD, Levine R, Figueroa LS, Guymon CA, Hansen MR. Micropatterned methacrylate polymers direct spiral ganglion neurite and Schwann cell growth. Hear Res. 2011;278(1–2):96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen NL, Waltzman SB, Fisher SG. A prospective, randomized study of cochlear implants. The Department of Veterans Affairs Cochlear Implant Study Group. N Engl J Med. 1993;328(4):233–7.

    Article  CAS  PubMed  Google Scholar 

  • Dorman MF, Smith L, Parkin JL. Loudness balance between acoustic and electric stimulation by a patient with a multichannel cochlear implant. Ear Hear. 1993;14(4):290–2.

    Article  CAS  PubMed  Google Scholar 

  • Dorman MF, Gifford RH, Spahr AJ, McKarns SA. The benefits of combining acoustic and electric stimulation for the recognition of speech, voice and melodies. Audiol Neurootol. 2008;13(2):105–12.

    Article  PubMed  Google Scholar 

  • Dorman MF, Spahr AJ, Loiselle L, Zhang T, Cook S, Brown C, Yost W. Localization and speech understanding by a patient with bilateral cochlear implants and bilateral hearing preservation. Ear Hear. 2013;34(2):245–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorman MF, Cook S, Spahr T, Zhang T, Loiselle L, Schramm D, Whittingham J, Gifford R. Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant. Hear Res. 2015;322:107–11.

    Article  PubMed  Google Scholar 

  • Dunn CC, Perreau A, Gantz B, Tyler RS. Benefits of localization and speech perception with multiple noise sources in listeners with a short-electrode cochlear implant. J Am Acad Audiol. 2010;21(1):44–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eddington DK, Dobelle WH, Brackmann DE, Mladejovsky MG, Parkin JL. Auditory prostheses research with multiple channel intracochlear stimulation in man. Ann Otol Rhinol Laryngol. 1978;87(6 Pt 2):1–39.

    CAS  PubMed  Google Scholar 

  • Favre E, Pelizzone M. Channel interactions in patients using the Ineraid multichannel cochlear implant. Hear Res. 1993;66(2):150–6.

    Article  CAS  PubMed  Google Scholar 

  • Fayad JN, Otto SR, Shannon RV, Brackmann DE. Cochlear and brainstem auditory prostheses—“Neural interface for hearing restoration: cochlear and brain stem implants”. Proc IEEE. 2008;96:1085–95.

    Article  Google Scholar 

  • Fishman KE, Shannon RV, Slattery WH. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J Speech Lang Hear Res. 1997;40(5):1201–15.

    Article  CAS  PubMed  Google Scholar 

  • Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am. 2001;110(2):1150–63.

    Article  CAS  PubMed  Google Scholar 

  • Gantz BJ, Turner CW. Combining acoustic and electrical hearing. Laryngoscope. 2003;113(10):1726–30.

    Article  PubMed  Google Scholar 

  • Gantz BJ, Tyler RS, Knutson JF, Woodworth G, Abbas P, McCabe BF, et al. Evaluation of five different cochlear implant designs: audiologic assessment and predictors of performance. Laryngoscope. 1988;98(10):1100–6.

    Article  CAS  PubMed  Google Scholar 

  • Garadat SN, Zwolan TA, Pfingst BE. Using temporal modulation sensitivity to select stimulation sites for processor MAPs in cochlear implant listeners. Audiol Neurootol. 2013;18(4):247–60.

    Article  PubMed  Google Scholar 

  • Garnham C, O’Driscoll M, Ramsden R, Saeed S. Speech understanding in noise with a Med-El COMBI 40+ cochlear implant using reduced channel sets. Ear Hear. 2002;23(6):540–52.

    Article  PubMed  Google Scholar 

  • Gifford RH, Shallop JK, Peterson AM. Speech recognition materials and ceiling effects: considerations for cochlear implant programs. Audiol Neurootol. 2008;13(3):193–205.

    Article  PubMed  Google Scholar 

  • Gifford RH, Dorman MF, Skarzynski H, Lorens A, Polak M, Driscoll CL, Roland P, Buchman CA. Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments. Ear Hear. 2013;34(4):413–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gifford RH, Dorman MF, Sheffield SW, Teece K, Olund AP. Availability of binaural cues for bilateral implant recipients and bimodal listeners with and without preserved hearing in the implanted ear. Audiol Neurootol. 2014a;19(1):57–71.

    Article  PubMed  Google Scholar 

  • Gifford RH, Grantham DW, Sheffield SW, Davis TJ, Dwyer R, Dorman MF. Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear. Hear Res. 2014b;312:28–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grantham DW, Ashmead DH, Ricketts TA, Labadie RF, Haynes DS. Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants. Ear Hear. 2007;28(4):524–41.

    Article  PubMed  Google Scholar 

  • Hahlbrock KH. Über Sprachaudiometrie und neue Wörterteste [Speech audiometry and new word-tests]. Arch Ohren Nasen Kehlkopfheilkd. 1953;162:394–431.

    Article  CAS  PubMed  Google Scholar 

  • Hahlbrock KH. Sprachaudiometrie [Speech Audiometry]. 2nd ed. Stuttgart, Germany: Georg Thieme; 1970.

    Google Scholar 

  • Helms J. Presentation during the Retirement Symposium for Professor Erwin S. Hochmair; University of Innsbruck, Innsbruck, Austria, 2009 Sep 25. (Remarks from the presentation are reproduced at http://www.uibk.ac.at/ipoint/blog/712922.html.)

  • Helms J, Müller J, Schön F, Moser L, Arnold W, Janssen T, et al. Evaluation of performance with the COMBI40 cochlear implant in adults: a multicentric clinical study. ORL J Otorhinolaryngol Relat Spec. 1997;59(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez VH, Gehrt A, Reuter K, Jing Z, Jeschke M, Mendoza Schulz A, et al. Optogenetic stimulation of the auditory pathway. J Clin Invest. 2014;124(3):1114–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochmair-Desoyer IJ, Hochmair ES, Burian K, Fischer RE. Four years of experience with cochlear prostheses. Med Prog Technol. 1981;8(3):107–19.

    CAS  PubMed  Google Scholar 

  • Hochmair-Desoyer IJ, Hochmair ES, Burian K, Stiglbrunner HK. Percepts from the Vienna cochlear prosthesis. Ann N Y Acad Sci. 1983;405:295–306.

    Article  CAS  PubMed  Google Scholar 

  • Hochmair-Desoyer I, Schulz E, Moser L, Schmidt M. The HSM sentence test as a tool for evaluating the speech understanding in noise of cochlear implant users. Am J Otol. 1997;18(6 Suppl):S83.

    CAS  PubMed  Google Scholar 

  • Holden LK, Finley CC, Firszt JB, Holden TJ, Brenner C, Potts LG, Gotter BD, Vanderhoof SS, Mispagel K, Heydebrand G, Skinner MW. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 2013;34(3):342–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • House WF, Urban J. Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann Otol Rhinol Laryngol. 1973;82(4):504–17.

    Article  CAS  PubMed  Google Scholar 

  • Hüttenbrink KB, Zahnert T, Jolly C, Hofmann G. Movements of cochlear implant electrodes inside the cochlea during insertion: an x-ray microscopy study. Otol Neurotol. 2002;23(2):187–91.

    Article  PubMed  Google Scholar 

  • Jeschke M, Moser T. Considering optogenetic stimulation for cochlear implants. Hear Res. 2015;322:224–34.

    Article  PubMed  Google Scholar 

  • Jolly C, Garnham C, Mirzadeh H, Truy E, Martini A, Kiefer J, Braun S. Electrode features for hearing preservation and drug delivery strategies. Adv Otorhinolaryngol. 2010;67:28–42.

    PubMed  Google Scholar 

  • Kiefer J, von Ilberg C, Rupprecht V, Hubner-Egner J, Knecht R. Optimized speech understanding with the continuous interleaved sampling speech coding strategy in patients with cochlear implants: effect of variations in stimulation rate and number of channels. Ann Otol Rhinol Laryngol. 2000;109(11):1009–20.

    Article  CAS  PubMed  Google Scholar 

  • Krueger B, Joseph G, Rost U, Strauss-Schier A, Lenarz T, Buechner A. Performance groups in adult cochlear implant users: speech perception results from 1984 until today. Otol Neurotol. 2008;29(4):509–12.

    Article  PubMed  Google Scholar 

  • Kwon BJ, van den Honert C. Effect of electrode configuration on psychophysical forward masking in cochlear implant listeners. J Acoust Soc Am. 2006;119(5 Pt 1):2994–3002.

    Article  PubMed  Google Scholar 

  • Landry TG, Fallon JB, Wise AK, Shepherd RK. Chronic neurotrophin delivery promotes ectopic neurite growth from the spiral ganglion of deafened cochleae without compromising the spatial selectivity of cochlear implants. J Comp Neurol. 2013;521(12):2818–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawson DT, Wilson BS, Zerbi M, Finley CC. Speech processors for auditory prostheses: 22 electrode percutaneous study—results for the first five subjects. Third Quarterly Progress Report. Bethesda, MD: Neural Prosthesis Program, National Institutes of Health; 1996. NIH project N01-DC-5-2103.

    Google Scholar 

  • Lazard DS, Giraud AL, Gnansia D, Meyer B, Sterkers O. Understanding the deafened brain: implications for cochlear implant rehabilitation. Eur Ann Otorhinolaryngol Head Neck Dis. 2012;129(2):98–103.

    Article  CAS  PubMed  Google Scholar 

  • Loiselle L. The value of two ears for sound source localization and speech understanding in complex listening environments: two cochlear implants vs. two partially hearing ears and one cochlear implant [Unpublished doctoral dissertation]. Tempe, AZ, USA: Arizona State University; 2013.

    Google Scholar 

  • Loiselle L, Dorman M, Yost W, Gifford R. Sound source localization by hearing preservation patients with and without symmetric, low-frequency acoustic hearing. Audiol Neurootol. 2015;20(3):166–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matic AI, Robinson AM, Young HK, Badofsky B, Rajguru SM, Stock S, Richter CP. Behavioral and electrophysiological responses evoked by chronic infrared neural stimulation of the cochlea. PLoS One. 2013;8(3):e58189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAlpine D. Developing a neuro-centric perspective to cochlear implantation. Cochlear Implants Int. 2011;12(s1):S40–3.

    Article  PubMed  Google Scholar 

  • Middlebrooks JC, Snyder RL. Auditory prosthesis with a penetrating nerve array. J Assoc Res Otolaryngol. 2007;8(2):258–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks JC, Snyder RL. Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. J Neurosci. 2010;30(5):1937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore DR, Shannon RV. Beyond cochlear implants: awakening the deafened brain. Nat Neurosci. 2009;12(6):686–91.

    Article  CAS  PubMed  Google Scholar 

  • Moser T. Optogenetic stimulation of the auditory pathway for research and future prosthetics. Curr Opin Neurobiol. 2015;34:29–36.

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Schön F, Helms J. Speech understanding in quiet and noise in bilateral users of the MED-EL COMBI 40/40+ cochlear implant system. Ear Hear. 2002;23(3):198–206.

    Article  PubMed  Google Scholar 

  • Nelson DA, Van Tasell DJ, Schroder AC, Soli S, Levine S. Electrode ranking of “place pitch” and speech recognition in electrical hearing. J Acoust Soc Am. 1995;98(4):1987–99.

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA, Schmitz JL, Donaldson GS, Viemeister NF, Javel E. Intensity discrimination as a function of stimulus level with electric stimulation. J Acoust Soc Am. 1996;100(4 Pt 1):2393–414.

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA, Kreft HA, Anderson ES, Donaldson GS. Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users. J Acoust Soc Am. 2011;129(6):3916–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble JH, Labadie RF, Gifford RH, Dawant BM. Image-guidance enables new methods for customizing cochlear implant stimulation strategies. IEEE Trans Neural Syst Rehabil Eng. 2013;21(5):820–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble JH, Gifford RH, Hedley-Williams AJ, Dawant BM, Labadie RF. Clinical evaluation of an image-guided cochlear implant programming strategy. Audiol Neurootol. 2014;19(6):400–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearsons KL, Bennet RL, Fidell S. Speech levels in various environments. Report No. 600/1-77-025. Washington, DC: U.S. Environmental Protection Agency; 1977.

    Google Scholar 

  • Peterson GE, Lehiste I. Revised CNC lists for auditory tests. J Speech Hear Disord. 1962;27:62–70.

    Article  CAS  PubMed  Google Scholar 

  • Pfingst BE, Bowling SA, Colesa DJ, Garadat SN, Raphael Y, Shibata SB, et al. Cochlear infrastructure for electrical hearing. Hear Res. 2011;281(1–2):65–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinyon JL, Tadros SF, Froud KE, Wong ACY, Tompson IT, Crawford EN, et al. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med. 2014;6(233):233ra54.

    Article  CAS  PubMed  Google Scholar 

  • Rader T, Fastl H, Baumann U. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Ear Hear. 2013;34(3):324–32.

    Article  PubMed  Google Scholar 

  • Richter C-P, Tan X. Photons and neurons. Hear Res. 2014;311:72–88.

    Article  PubMed  Google Scholar 

  • Schoen F, Mueller J, Helms J, Nopp P. Sound localization and sensitivity to interaural cues in bilateral users of the Med-El Combi 40/40 + cochlear implant system. Otol Neurotol. 2005;26(3):429–37.

    Article  CAS  PubMed  Google Scholar 

  • Shannon RV. Adventures in bionic hearing. In: Popper AN, Fay RR, editors. Perspectives on auditory research. New York: Springer; 2014. p. 533–50.

    Chapter  Google Scholar 

  • Sheffield SW, Jahn K, Gifford RH. Preserved acoustic hearing in cochlear implantation improves speech perception. J Am Acad Audiol. 2015;26(3):289–98.

    Article  PubMed  Google Scholar 

  • Shepherd RK, Wise AK. Gene therapy boosts the bionic ear. Sci Transl Med. 2014;6(233):233fs17.

    Article  CAS  PubMed  Google Scholar 

  • Spahr AJ, Dorman MF, Litvak LM, Van Wie S, Gifford RH, Loizou PC, et al. Development and validation of the AzBio sentence lists. Ear Hear. 2012;33(1):112–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spahr AJ, Dorman MF, Litvak LM, Cook SJ, Loiselle LM, DeJong MD, Hedley-Williams A, Sunderhaus LS, Hayes CA, Gifford RH. Development and validation of the Pediatric AzBio sentence lists. Ear Hear. 2014;35(4):418–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Townshend B, Cotter N, Van Compernolle D, White RL. Pitch perception by cochlear implant subjects. J Acoust Soc Am. 1987;82(1):106–15.

    Article  CAS  PubMed  Google Scholar 

  • von Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, Hartmann R, Stürzebecher E, Klinke R. Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss. ORL J Otorhinolaryngol Relat Spec. 1999;61(6):334–40.

    Article  Google Scholar 

  • Wackym PA, Runge-Samuelson CL, Firszt JB, Alkaf FM, Burg LS. More challenging speech-perception tasks demonstrate binaural benefit in bilateral cochlear implant users. Ear Hear. 2007;28(2 Suppl):80S–5.

    Article  PubMed  Google Scholar 

  • Wilson BS. The future of cochlear implants. Br J Audiol. 1997;31(4):205–25.

    Article  CAS  PubMed  Google Scholar 

  • Wilson BS. Engineering design of cochlear implant systems. In: Zeng F-G, Popper AN, Fay RR, editors. Auditory prostheses: cochlear implants and beyond. New York: Springer; 2004. p. 14–52.

    Chapter  Google Scholar 

  • Wilson BS. Speech processing strategies. In: Cooper HR, Craddock LC, editors. Cochlear implants: a practical guide. 2nd ed. Hoboken, NJ: Wiley; 2006. p. 21–69.

    Google Scholar 

  • Wilson BS. Treatments for partial deafness using combined electric and acoustic stimulation of the auditory system. J Hear Sci. 2012;2(2):19–32.

    Google Scholar 

  • Wilson BS. Toward better representations of sound with cochlear implants. Nat Med. 2013;19(10):1245–8.

    Article  CAS  PubMed  Google Scholar 

  • Wilson BS. Getting a decent (but sparse) signal to the brain for users of cochlear implants. Hear Res. 2015;322:24–38.

    Article  PubMed  Google Scholar 

  • Wilson BS, Dorman MF. The surprising performance of present-day cochlear implants. IEEE Trans Biomed Eng. 2007;54(6 Pt 1):969–72.

    Article  PubMed  Google Scholar 

  • Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hear Res. 2008;242(1–2):3–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson BS, Dorman MF. The design of cochlear implants. In: Niparko JK, Kirk KI, Mellon NK, Robbins AM, Tucci DL, Wilson BS, editors. Cochlear implants: principles & practices. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2009. p. 95–135.

    Google Scholar 

  • Wilson BS, Dorman MF. Signal processing strategies for cochlear implants. In: Ruckenstein MJ, editor. Cochlear implants and other implantable hearing devices. San Diego, CA: Plural; 2012. p. 51–84.

    Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM. Better speech recognition with cochlear implants. Nature. 1991;352(6332):236–8.

    Article  CAS  PubMed  Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Zerbi M. Temporal representations with cochlear implants. Am J Otol. 1997a;18(6 Suppl):S30–4.

    CAS  PubMed  Google Scholar 

  • Wilson BS, Zerbi M, Finley CC, Lawson DT, van den Honert C. Speech processors for auditory prostheses: relationships between temporal patterns of nerve activity and pitch judgments for cochlear implant patients. Eighth Quarterly Progress Report. Bethesda, MD: Neural Prosthesis Program, National Institutes of Health; 1997b. NIH project N01-DC-5-2103.

    Google Scholar 

  • Wilson BS, Lawson DT, Müller JM, Tyler RS, Kiefer J. Cochlear implants: some likely next steps. Annu Rev Biomed Eng. 2003;5:207–49.

    Article  CAS  PubMed  Google Scholar 

  • Wilson BS, Lopez-Poveda EA, Schatzer R. Use of auditory models in developing coding strategies for cochlear implants. In: Meddis R, Lopez-Poveda EA, Popper A, Fay RR, editors. Computational models of the auditory system. New York: Springer; 2010. p. 237–60.

    Chapter  Google Scholar 

  • Wilson BS, Dorman MF, Woldorff MG, Tucci DL. Cochlear implants: matching the prosthesis to the brain and facilitating desired plastic changes in brain function. Prog Brain Res. 2011;194:117–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng FG. Temporal pitch in electric hearing. Hear Res. 2002;174(1–2):101–6.

    Article  PubMed  Google Scholar 

  • Zeng FG, Shannon RV. Loudness balance between electric and acoustic stimulation. Hear Res. 1992;60(2):231–5.

    Article  CAS  PubMed  Google Scholar 

  • Zeng FG, Rebscher S, Harrison W, Sun X, Feng H. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng. 2008;1:115–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou N, Pfingst BE. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants. J Acoust Soc Am. 2012;132(2):994–1008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zwolan TA, Collins LM, Wakefield GH. Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects. J Acoust Soc Am. 1997;102(6):3673–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Parts of this chapter are adaptations from prior publications, including Wilson (2013, 2015) and Wilson and Dorman (2008, 2012). Author BSW is a consultant for MED-EL GmbH; author MFD is a consultant for Advanced Bionics LLC; and author RHG is a member of audiology advisory boards for MED-EL, Advanced Bionics, and Cochlear Ltd. None of the statements in this chapter favor any of those companies or any other company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake S. Wilson PhD, DSc, DEng, Drmedhc (mult) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Wilson, B.S., Dorman, M.F., Gifford, R.H., McAlpine, D. (2016). Cochlear Implant Design Considerations. In: Young, N., Iler Kirk, K. (eds) Pediatric Cochlear Implantation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2788-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2788-3_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2787-6

  • Online ISBN: 978-1-4939-2788-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics