Skip to main content

Assessment of Mitochondrial Ca2+ Uptake

  • Protocol
  • First Online:
Mitochondrial Medicine

Abstract

Mitochondrial Ca2+ uptake regulates mitochondrial function and contributes to cell signaling. Accordingly, quantifying mitochondrial Ca2+ signals and elaborating the mechanisms that accomplish mitochondrial Ca2+ uptake are essential to gain our understanding of cell biology. Here, we describe the benefits and drawbacks of various established old and new techniques to assess dynamic changes of mitochondrial Ca2+ concentration ([Ca2+]mito) in a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96:13807–13812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833

    Article  CAS  PubMed  Google Scholar 

  3. Giorgi C, Romagnoli A, Pinton P, Rizzuto R (2008) Ca2+ signaling, mitochondria and cell death. Curr Mol Med 8:119–130

    Article  CAS  PubMed  Google Scholar 

  4. De Stefani D, Raffaello A, Teardo E, SzabĂ² I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mallilankaraman K, CĂ¡rdenas C, Doonan PJ, Chandramoorthy HC, Irrinki KM, GolenĂ¡r T et al (2012) MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol 14:1336–1343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE et al (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467:291–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zecchini E, Siviero R, Giorgi C, Rizzuto R, Pinton P (2007) Mitochondrial calcium signalling: message of life and death. Ital J Biochem 56:235–242

    PubMed  Google Scholar 

  10. Jean-Quartier C, Bondarenko AI, Alam MR, Trenker M, Waldeck-Weiermair M, Malli R et al (2010) Studying mitochondrial Ca2+ uptake—a revisit. Mol Cell Endocrinol 353:114–127

    Article  Google Scholar 

  11. Sancak Y, Markhard AL, Kitami T, KovĂ¡cs-BogdĂ¡n E, Kamer KJ, Udeshi ND et al (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342:1379–1382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Waldeck-Weiermair M, Deak AT, Groschner LN, Alam MR, Jean-Quartier C, Malli R et al (2013) Molecularly distinct routes of mitochondrial Ca2+ uptake are activated depending on the activity of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA). J Biol Chem 288:15367–15379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bright GR, Fisher GW, Rogowska J, Taylor DL (1989) Fluorescence ratio imaging microscopy. Methods Cell Biol 30:157–192

    Article  CAS  PubMed  Google Scholar 

  14. Eberhard M, Erne P (1991) Calcium binding to fluorescent calcium indicators: calcium green, calcium orange and calcium crimson. Biochem Biophys Res Commun 180:209–215

    Article  CAS  PubMed  Google Scholar 

  15. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    Article  CAS  PubMed  Google Scholar 

  16. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98(6):3197–3202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nakai J, Ohkura M, Imoto KA (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M et al (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–1891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  20. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101:17404–17409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D et al (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530

    Article  CAS  PubMed  Google Scholar 

  22. McCombs JE, Palmer AE (2008) Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46:152–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Carlson HJ, Campbell RE (2009) Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. Curr Opin Biotechnol 20:19–27

    Article  CAS  PubMed  Google Scholar 

  24. Waldeck-Weiermair M, Alam MR, Khan MJ, Deak AT, Vishnu N, Karsten F et al (2012) Spatiotemporal correlations between cytosolic and mitochondrial Ca2+ signals using a novel red-shifted mitochondrial targeted cameleon. PLoS One 7:e45917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bondarenko AI, Jean-Quartier C, Malli R, Graier WF (2013) Characterization of distinct single-channel properties of Ca2+ inward currents in mitochondria. Pflugers Arch 465:997–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wiederkehr A, Szanda G, Akhmedov D, Mataki C, Heizmann CW, Schoonjans K et al (2011) Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab 13:601–611

    Article  CAS  PubMed  Google Scholar 

  27. Vishnu N, Jadoon Khan M, Karsten F, Groschner LN, Waldeck-Weiermair M, Rost R et al (2014) ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+-release. Mol Biol Cell 25(3):368–379

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nakano M, Imamura H, Nagai T, Noji H (2011) Ca2+ regulation of mitochondrial ATP synthesis visualized at the single cell level. ACS Chem Biol 6:709–715

    Article  CAS  PubMed  Google Scholar 

  29. Fieni F, Lee SB, Jan YN, Kirichok Y (2012) Activity of the mitochondrial calcium uniporter varies greatly between tissues. Nat Commun 3:1317

    Article  PubMed  Google Scholar 

  30. Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151:400–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Decker GL, Greenawalt JW (1977) Ultrastructural and biochemical studies of mitoplasts and outer membranes derived from French-pressed mitochondria. Advances in mitochondrial subfractionation. J Ultrastruct Res 59:44–56

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Waldeck-Weiermair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Deak, A.T. et al. (2015). Assessment of Mitochondrial Ca2+ Uptake. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1264. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2257-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2257-4_35

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2256-7

  • Online ISBN: 978-1-4939-2257-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics