Skip to main content

Experimental Challenges of Shear Rheology: How to Avoid Bad Data

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

A variety of measurement artifacts can be blamed for misinterpretations of shear thinning, shear thickening, and viscoelastic responses, when the material does not actually have these properties. The softness and activity of biological materials will often magnify the challenges of experimental rheological measurements. The theoretical definitions of rheological material functions are based on stress, strain, and strain-rate components in simple deformation fields. In reality, one typically measures loads and displacements at the boundaries of a sample, and the calculation of true stress and strain may be encumbered by instrument resolution, instrument inertia, sample inertia, boundary effects, and volumetric effects. Here we discuss these common challenges in measuring shear material functions in the context of soft, water-based, and even living biological complex fluids. We discuss techniques for identifying and minimizing experimental errors and for pushing the experimental limits of rotational shear rheometers. Two extreme case studies are used: an ultrasoft aqueous polymer/fiber network (hagfish defense gel) and an actively swimming suspension of microalgae (Dunaliella primolecta).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.M. Dealy, J. Rheol. 39(1), 253 (1995)

    Article  ADS  Google Scholar 

  2. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids: Volume 1 Fluid Mechanics, 2nd ed. (Wiley, New York, 1987)

    Google Scholar 

  3. R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999)

    Google Scholar 

  4. N. Bharadwaj, J.T. Allison, R.H. Ewoldt, in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Portland, OR, 2013), paper DETC2013–13,462

    Google Scholar 

  5. R.H. Ewoldt, T.M. Winegard, D.S. Fudge, Int. J. Non-Linear Mech. 46(4), 627 (2011)

    Article  ADS  Google Scholar 

  6. R.H. Ewoldt, J. Rheol. 57(1), 177 (2013)

    Article  ADS  Google Scholar 

  7. K. Walters, Rheometry (Wiley, New York, 1975)

    Google Scholar 

  8. C.W. Macosko, Rheology: Principles, Measurements, and Applications (Wiley-VCH, New York, 1994)

    Google Scholar 

  9. R.L. Powell, in Rheological Measurement, ed. by A.A. Collyer, D.W. Clegg, 2nd edn., Chap. 9 (Springer, Dordrecht, 1998), pp. 260–298

    Google Scholar 

  10. M.S. Oliveira, R. Yeh, G.H. McKinley, J. Non-Newtonian Fluid Mech. 137(1–3), 137 (2006)

    Article  Google Scholar 

  11. L.E. Rodd, T.P. Scott, D.V. Boger, J.J. Cooper-White, G.H. McKinley, J. Non-Newtonian Fluid Mech. 129(1), 1 (2005)

    Article  Google Scholar 

  12. J. Soulages, M. Oliveira, P. Sousa, M. Alves, G. McKinley, J. Non-Newtonian Fluid Mech. 163(1–3), 9 (2009)

    Article  MATH  Google Scholar 

  13. M. Johnston, R. Ewoldt, J. Rheol. 57(6), 1515 (2013)

    Article  ADS  Google Scholar 

  14. D.S. Fudge, T. Winegard, R.H. Ewoldt, D. Beriault, L. Szewciw, G.H. McKinley, Integr. Comp. Biol. 49(1), 32 (2009)

    Article  Google Scholar 

  15. C. Baravian, D. Quemada, Rheol. Acta 37(3), 223 (1998)

    Article  Google Scholar 

  16. C. Baravian, G. Benbelkacem, F. Caton, Rheol. Acta 46(5), 577 (2006)

    Article  Google Scholar 

  17. R.H. Ewoldt, G.H. McKinley, Rheol. Bull. 76(1), 4 (2007)

    Google Scholar 

  18. N.Y. Yao, R.J. Larsen, D.A. Weitz, J. Rheol. 52(4), 1013 (2008)

    Article  ADS  Google Scholar 

  19. Y.C. Lin, G.H. Koenderink, F.C. MacKintosh, D.A. Weitz, Macromolecules 40(21), 7714 (2007)

    Article  ADS  Google Scholar 

  20. P. Sharif-Kashani, J.P. Hubschman, D. Sassoon, H.P. Kavehpour, J. Biomech. 44(3), 419 (2011)

    Article  Google Scholar 

  21. C.P. Broedersz, K.E. Kasza, L.M. Jawerth, S. Münster, D.A. Weitz, F.C. MacKintosh, Soft Matter 6(17), 4120 (2010)

    Article  ADS  Google Scholar 

  22. H. Lee, J.M. Ferrer, F. Nakamura, M.J. Lang, R.D. Kamm, Acta Biomater. 6(4), 1207 (2010)

    Article  Google Scholar 

  23. K.M. Weigandt, D.C. Pozzo, L. Porcar, Soft Matter 5(21), 4321 (2009)

    Article  ADS  Google Scholar 

  24. S. Suri, C.E. Schmidt, Acta Biomater. 5(7), 2385 (2009)

    Article  Google Scholar 

  25. L.C.E. Struik, Rheol. Acta 6(2), 119 (1967)

    Article  MathSciNet  Google Scholar 

  26. M.E. Mackay, C.H. Liang, P.J. Halley, Rheol. Acta 31(5), 481 (1992)

    Article  Google Scholar 

  27. J. Magda, R. Larson, J. Non-Newtonian Fluid Mech. 30(1), 1 (1988)

    Article  ADS  Google Scholar 

  28. E.S.G. Shaqfeh, Annu. Rev. Fluid Mech. 28, 129 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  29. G.H. McKinley, P. Pakdel, A. Öztekin, J. Non-Newtonian Fluid Mech. 67, 19 (1996)

    Article  Google Scholar 

  30. P. Pakdel, G. McKinley, Phys. Rev. Lett. 77(12), 2459 (1996)

    Article  ADS  Google Scholar 

  31. J.L. Schrag, J. Rheol. 21(3), 399 (1977)

    Article  MATH  ADS  Google Scholar 

  32. J.A. Yosick, J.A. Giacomin, W.E. Stewart, F. Ding, Rheol. Acta 37(4), 365 (1998)

    Article  Google Scholar 

  33. C. Storm, J.J. Pastore, F.C. MacKintosh, T.C. Lubensky, P.A. Janmey, Nature 435(7039), 191 (2005)

    Article  ADS  Google Scholar 

  34. G.I. Taylor, Philos. Trans. R. Soc. Lond. A. Math. Phys. Character 223(605–615), 289 (1923)

    Article  MATH  ADS  Google Scholar 

  35. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1981)

    Google Scholar 

  36. R.G. Larson, Rheol. Acta 31(3), 213 (1992)

    Article  Google Scholar 

  37. ISO, 3219, Determination of viscosity using a rotational viscometer with defined shear rate (1993)

    Google Scholar 

  38. H.P. Sdougos, S.R. Bussolari, C.F. Dewey, J. Fluid Mech. 138, 379 (1984)

    Article  ADS  Google Scholar 

  39. R.M. Turian, Ind. Eng. Chem. Fund. 11(3), 361 (1972)

    Article  Google Scholar 

  40. B. Meulenbroek, C. Storm, A.N. Morozov, W. van Saarloos, J. Non-Newtonian Fluid Mech. 116(2–3), 235 (2004)

    Article  MATH  Google Scholar 

  41. L. Pan, A. Morozov, C. Wagner, P.E. Arratia, Phys. Rev. Lett. 110(17), 174502 (2013)

    Article  ADS  Google Scholar 

  42. D.F. Griffiths, K. Walters, J. Fluid Mech. 42(02), 379 (1970)

    Article  ADS  Google Scholar 

  43. R.W.G. Shipman, M.M. Denn, R. Keunings, Ind. Eng. Chem. Res. 30(5), 918 (1991)

    Article  Google Scholar 

  44. F.M. Orr, L.E. Scriven, A.P. Rivas, J. Fluid Mech. 67(04), 723 (1975)

    Article  MATH  ADS  Google Scholar 

  45. M.A. Fortes, J. Colloid Interface Sci. 88(2), 338 (1982)

    Article  Google Scholar 

  46. E.J. De Souza, L. Gao, T.J. McCarthy, E. Arzt, A.J. Crosby, Langmuir 24(4), 1391 (2008)

    Article  Google Scholar 

  47. H.M. Laun, J. Meissner, Rheol. Acta 19(1), 60 (1980)

    Article  Google Scholar 

  48. M.E. Mackay, C.A. Cathey, J. Rheol. 35(2), 237 (1991)

    Article  ADS  Google Scholar 

  49. M.E. Mackay, in Rheological Measurement, ed. by A. Collyer, D. Clegg, 2nd edn., Chap. 20 (Springer, Dordrecht, 1998), pp. 635–665

    Google Scholar 

  50. E. Merrill, Physiol. Rev. 49(4), 863 (1969)

    Google Scholar 

  51. V. Sharma, A. Jaishankar, Y.C. Wang, G.H. McKinley, Soft Matter 7(11), 5150 (2011)

    Article  ADS  Google Scholar 

  52. R. Buscall, J.I. McGowan, A.J. Morton-Jones, J. Rheol. 37(4), 621 (1993)

    Article  ADS  Google Scholar 

  53. H.A. Barnes, J. Non-Newtonian Fluid Mech. 56(3), 221 (1995)

    Article  Google Scholar 

  54. R. Buscall, J. Rheol. 54(6), 1177 (2010)

    Article  ADS  Google Scholar 

  55. A. Magnin, J. Piau, J. Non-Newtonian Fluid Mech. 36, 85 (1990)

    Article  Google Scholar 

  56. P. Ballesta, G. Petekidis, L. Isa, W.C.K. Poon, R. Besseling, J. Rheol. 56(5), 1005 (2012)

    Article  ADS  Google Scholar 

  57. A. Yoshimura, R.K. Prudhomme, J. Rheol. 32(1), 53 (1988)

    Article  ADS  Google Scholar 

  58. C. Clasen, Rheol. Acta 51(10), 883 (2012)

    Article  Google Scholar 

  59. R.H. Ewoldt, C. Clasen, A.E. Hosoi, G.H. McKinley, Soft Matter 3(5), 634 (2007)

    Article  ADS  Google Scholar 

  60. C.S. Nickerson, J.A. Kornfield, J. Rheol. 49(4), 865 (2005)

    Article  ADS  Google Scholar 

  61. C.S. Nickerson, J. Park, J.A. Kornfield, H. Karageozian, J. Biomech. 41(9), 1840 (2008)

    Article  Google Scholar 

  62. H.A. Barnes, Q.D. Nguyen, J. Non-Newtonian Fluid Mech. 98(1), 1 (2001)

    Article  MATH  Google Scholar 

  63. K. Tan, S. Cheng, L. Jugé, L.E. Bilston, J. Biomech. 46(6), 1060 (2013)

    Article  Google Scholar 

  64. S. Nicolle, J.F. Palierne, J. Mech. Behav. Biomed. Mater. 14(null), 158 (2012)

    Google Scholar 

  65. W. Philippoff, C. Han, B. Barnett, M. Dulfano, Biorheology 7(1), 55 (1970)

    Google Scholar 

  66. S.J. Haward, V. Sharma, J.A. Odell, Soft Matter 7(21), 9908 (2011)

    Article  ADS  Google Scholar 

  67. C. Clasen, G.H. McKinley, J. Non-Newtonian Fluid Mech. 124(1–3), 1 (2004)

    Article  MATH  Google Scholar 

  68. C. Clasen, B.P. Gearing, G.H. McKinley, J. Rheol. 50(6), 883 (2006)

    Article  ADS  Google Scholar 

  69. N. Kojić, J. Bico, C. Clasen, G.H. McKinley, J. Exp. Biol. 209(Pt 21), 4355 (2006)

    Google Scholar 

  70. P. Erni, M. Varagnat, C. Clasen, J. Crest, G.H. McKinley, Soft Matter 7(22), 10889 (2011)

    Article  ADS  Google Scholar 

  71. A. Tokarev, B. Kaufman, Y. Gu, T. Andrukh, P.H. Adler, K.G. Kornev, Appl. Phys. Lett. 102(3), 033701 (2013)

    Article  ADS  Google Scholar 

  72. R. Få hræus, T. Lindqvist, Am. J. Physiol. 96(3), 562 (1931)

    Google Scholar 

  73. R.W. Connelly, J. Greener, J. Rheol. 29(2), 209 (1985)

    Article  ADS  Google Scholar 

  74. E. Andablo-Reyes, R. Hidalgo-Álvarez, J. de Vicente, J. Non-Newtonian Fluid Mech. 165(19–20), 1419 (2010)

    Article  MATH  Google Scholar 

  75. G.A. Davies, J.R. Stokes, J. Rheol. 49(4), 919 (2005)

    Article  ADS  Google Scholar 

  76. C.J. Pipe, T.S. Majmudar, G.H. McKinley, Rheol. Acta 47(5–6), 621 (2008)

    Article  Google Scholar 

  77. R.I. Tanner, M. Keentok, J. Rheol. 27(1), 47 (1983)

    Article  ADS  Google Scholar 

  78. M. Keentok, S.C. Xue, Rheol. Acta 38(4), 321 (1999)

    Article  Google Scholar 

  79. J.S. Vrentas, D.C. Venerus, C.M. Vrentas, J. Non-Newtonian Fluid Mech. 40(1), 1 (1991)

    Article  MATH  Google Scholar 

  80. T. Schweizer, J. Rheol. 47(4), 1071 (2003)

    Article  ADS  Google Scholar 

  81. S.Q. Wang, S. Ravindranath, P.E. Boukany, Macromolecules 44(2), 183 (2011)

    Article  ADS  Google Scholar 

  82. F. Snijkers, D. Vlassopoulos, J. Rheol. 55(6), 1167 (2011)

    Article  ADS  Google Scholar 

  83. M.E. Mackay, P. Halley, J. Rheol. 35(8), 1609 (1991)

    Article  ADS  Google Scholar 

  84. C.Y. Liu, M. Yao, R.G. Garritano, A.J. Franck, C. Bailly, Rheol. Acta 50(5–6), 537 (2011)

    Article  Google Scholar 

  85. K. Schröter, S.A. Hutcheson, X. Shi, A. Mandanici, G.B. McKenna, J. Chem. Phys. 125(21), 214507 (2006)

    Article  ADS  Google Scholar 

  86. T. Schweizer, A. Bardow, Rheol. Acta 45(4), 393 (2006)

    Article  Google Scholar 

  87. S.A. Hutcheson, G.B. McKenna, J. Chem. Phys. 129(7), 074502 (2008)

    Article  ADS  Google Scholar 

  88. C. Dutcher, S. Muller, Phys. Rev. E. 75, 047301 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant No. CBET-1342408. RHE and LMC acknowledge helpful discussions regarding careful rheological measurements with Prof. Christopher Macosko and Dr. David Giles at the University of Minnesota. RHE also thanks Prof. Gareth McKinley at the Massachusetts Institute of Technology for initial discussions on drawing experimental boundaries for rheological measurements. RHE and LMC also acknowledge Prof. Jian Sheng at Texas Tech University (formerly University of Minnesota) for suggesting the study of actively swimming microalgae suspensions, and Mr. Anwar Chengala for preparing those samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy H. Ewoldt .

Editor information

Editors and Affiliations

Appendix: Material Details: Hagfish Gel and Microalgae Suspension

Appendix: Material Details: Hagfish Gel and Microalgae Suspension

Hagfish gel serves as an example of an ultrasoft biomaterial gel. It is prepared as in [5, 14] and used in Figs. 6.5, 6.6, and 6.7. The actively swimming microalgae suspension provides an example of a low-viscosity biological solution and is used in Figs. 6.3 and 6.16. The algal species Dunaliella primolecta was used. It is a motile, biflagellated, cell-wall-less, unicellular green algae that does not clump. It has slight negative buoyancy, approximate characteristic diameter 11 μm, and natural concentration on the order of 3 ⋅ 106 cells/mL. Dunaliella Primolecta (UTEX LB 1000) was obtained from UTEX, The Culture Collection of Algae at the University of Texas at Austin. Nonmotile samples were prepared by adding 2 mL of 4 %wt/vol of formaldehyde in phosphate buffered saline (PBS) solution to 25 mL of the bulk sample. The fixed sample was analyzed under light microscope to ensure it was nonmotile.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ewoldt, R.H., Johnston, M.T., Caretta, L.M. (2015). Experimental Challenges of Shear Rheology: How to Avoid Bad Data. In: Spagnolie, S. (eds) Complex Fluids in Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2065-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2065-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2064-8

  • Online ISBN: 978-1-4939-2065-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics