Skip to main content

Protein Intake and Bone Health

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

Abstract

In the development and maintenance of bone structures resistant to usual mechanical stresses, adequate nutrition plays an important part. In addition to calcium associated with an adequate supply of vitamin D, dietary protein represents a key nutrient for bone health and thereby for the prevention of osteoporosis. During growth, protein under nutrition from infancy to childhood and adolescence results in reduced bone mass and strength, thereby increasing the risk of fragility fracture in later life. On the contrary, high protein intake, particularly when associated with physical activity, favors healthy development and peak bone mass acquisition, thereby enabling individuals to reach their genetic potential. There is a positive interaction between dietary protein, calcium–phosphate economy, and bone metabolism. This interaction appears to be mediated by the anabolic bone trophic factor IGF-I, the hepatic production of which is stimulated by amino acids supplied by dietary proteins. Amino acids such as arginine can exert a direct positive effect on the IGF-I production by bone forming cells. In young adulthood energy deficit, as observed in anorexia nervosa, can be associated with insufficient protein supply, low circulating IGF-I, bone loss and increased risk of fragility fracture. With aging, the reduction in the protein intake is associated in both genders with a decrease in the serum level of IGF-I, lower femoral neck aBMD, and poor physical performance. Protein under nutrition is often present in patients experiencing hip fracture. Furthermore, clinical outcome after hip fracture can be significantly improved by normalizing protein intake, which is associated with a rise in the serum IGF-I level. Thus, dietary protein contributes to bone health from early childhood to old age. An adequate intake of proteins should be recommended in the prevention and treatment of postmenopausal and age-dependent osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robey PG, Boskey AL. The composition of bone. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington, DC: The American Society of Bone and Mineral Research; 2008. p. 32–8.

    Chapter  Google Scholar 

  2. Kraenzlin ME, Seibel MJ. Measurements of biochemical markers of bone resorption. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Dynamic bone and cartilage metabolism: principles and clinical applications. 2nd ed. San Diego: Academic Press; 2006. p. 541–63.

    Chapter  Google Scholar 

  3. Vasikaran S, Eastell R, Bruyere O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.

    Article  CAS  PubMed  Google Scholar 

  4. Nishizawa Y, Ohta H, Miura M, et al. Guidelines for the use of bone metabolic markers in the diagnosis and treatment of osteoporosis (2012 edition). J Bone Miner Metab. 2013;31:1–15.

    Article  CAS  PubMed  Google Scholar 

  5. Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15:80–101.

    CAS  PubMed  Google Scholar 

  6. Schurch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1998;128:801–9.

    Article  CAS  PubMed  Google Scholar 

  7. Rizzoli R, Bonjour JP. Dietary protein and bone health. J Bone Miner Res. 2004;19:527–31.

    Article  PubMed  Google Scholar 

  8. Bonjour JP, Ammann P, Chevalley T, Rizzoli R. Nutrition and insulin growth factor-1 in relation to bone health and disease. In: Houston MS, Holly JMP, Feldman EL, editors. IGF and nutrition in health and diseases. Totowa, New Jersey: Humana Press; 2005. p. 177–92.

    Google Scholar 

  9. Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J. The role of liver-derived insulin-like growth factor-I. Endocr Rev. 2009;30:494–535.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ammann P, Bourrin S, Bonjour JP, Meyer JM, Rizzoli R. Protein undernutrition-induced bone loss is associated with decreased IGF-I levels and estrogen deficiency. J Bone Miner Res. 2000;15:683–90.

    Article  CAS  PubMed  Google Scholar 

  11. Caverzasio J, Montessuit C, Bonjour JP. Stimulatory effect of insulin-like growth factor-1 on renal Pi transport and plasma 1,25-dihydroxyvitamin D3. Endocrinology. 1990;127:453–9.

    Article  CAS  PubMed  Google Scholar 

  12. Nesbitt T, Drezner MK. Insulin-like growth factor-I regulation of renal 25-hydroxyvitamin D-1-hydroxylase activity. Endocrinology. 1993;132:133–8.

    CAS  PubMed  Google Scholar 

  13. Condamine L, Menaa C, Vrtovsnik F, Friedlander G, Garabedian M. Local action of phosphate depletion and insulin-like growth factor 1 on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells. J Clin Invest. 1994;94:1673–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Menaa C, Vrtovsnik F, Friedlander G, Corvol M, Garabedian M. Insulin-like growth factor I, a unique calcium-dependent stimulator of 1,25-dihydroxyvitamin D3 production. Studies in cultured mouse kidney cells. J Biol Chem. 1995;270:25461–7.

    Article  CAS  PubMed  Google Scholar 

  15. Caverzasio J, Bonjour JP. IGF-I, a key regulator of renal phosphate transport and 1,25-Dihydroxyvitamine D3 production during growth. News Physiol Sci. 1991;6:206–10.

    CAS  Google Scholar 

  16. Comar CL, Nold MM, Wasserman RH. The influence of amino acids and other organic compounds on the gastrointestinal absorption of calcium 45 and strontium 89 in the rat. J Nutr. 1956;59:371–83.

    CAS  PubMed  Google Scholar 

  17. Kerstetter JE, O'Brien KO, Caseria DM, Wall DE, Insogna KL. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J Clin Endocrinol Metab. 2005;90:26–31.

    Article  CAS  PubMed  Google Scholar 

  18. Conigrave AD, Quinn SJ, Brown EM. L-amino acid sensing by the extracellular Ca2 + -sensing receptor. Proc Natl Acad Sci U S A. 2000;97:4814–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gaffney-Stomberg E, Insogna KL, Rodriguez NR, Kerstetter JE. Increasing dietary protein requirements in elderly people for optimal muscle and bone health. J Am Geriatr Soc. 2009;57:1073–9.

    Article  PubMed  Google Scholar 

  20. Topala CN, Schoeber JP, Searchfield LE, Riccardi D, Hoenderop JG, Bindels RJ. Activation of the Ca2 + -sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium. 2009;45:331–9.

    Article  CAS  PubMed  Google Scholar 

  21. Conigrave AD, Brown EM, Rizzoli R. Dietary protein and bone health: roles of amino acid-sensing receptors in the control of calcium metabolism and bone homeostasis. Annu Rev Nutr. 2008;28:131–55.

    Article  CAS  PubMed  Google Scholar 

  22. Ferre S, Hoenderop JG, Bindels RJ. Sensing mechanisms involved in Ca2+ and Mg2+ homeostasis. Kidney Int. 2012;82:1157–66.

    Article  CAS  PubMed  Google Scholar 

  23. Conigrave AD, Ward DT. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab. 2013;27:315–31.

    Article  CAS  PubMed  Google Scholar 

  24. Kerstetter JE, O'Brien KO, Insogna KL. Dietary protein, calcium metabolism, and skeletal homeostasis revisited. Am J Clin Nutr. 2003;78:584S–92.

    CAS  PubMed  Google Scholar 

  25. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res. 2009;24:1835–40.

    Article  CAS  PubMed  Google Scholar 

  26. Kerstetter JE, Caseria DM, Mitnick ME, Ellison AF, Gay LF, Liskov TA, Carpenter TO, Insogna KL. Increased circulating concentrations of parathyroid hormone in healthy, young women consuming a protein-restricted diet. Am J Clin Nutr. 1997;66:1188–96.

    CAS  PubMed  Google Scholar 

  27. Kerstetter JE, O'Brien KO, Insogna KL. Low protein intake: the impact on calcium and bone homeostasis in humans. J Nutr. 2003;133:855S–61.

    CAS  PubMed  Google Scholar 

  28. Bonjour JP. Dietary protein: an essential nutrient for bone health. J Am Coll Nutr. 2005;24:526S–36.

    Article  CAS  PubMed  Google Scholar 

  29. Kerstetter JE. Dietary protein and bone: a new approach to an old question. Am J Clin Nutr. 2009;90:1451–2.

    Article  CAS  PubMed  Google Scholar 

  30. Bonjour JP. Nutritional disturbance in acid-base balance and osteoporosis: a hypothesis that disregards the essential homeostatic role of the kidney. Br J Nutr. 2013;110:1168–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rouy E, Vico L, Laroche N, Benoit V, Rousseau B, Blachier F, Tome D, Blais A (2014) Protein quality affects bone status during moderate protein restriction in growing mice. Bone 59:7–13.

    Google Scholar 

  32. Munger RG, Cerhan JR, Chiu BC. Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am J Clin Nutr. 1999;69:147–52.

    CAS  PubMed  Google Scholar 

  33. Chevalley T, Rizzoli R, Manen D, Caverzasio J, Bonjour JP. Arginine increases insulin-like growth factor-I production and collagen synthesis in osteoblast-like cells. Bone. 1998;23:103–9.

    Article  CAS  PubMed  Google Scholar 

  34. Bikle DD, Wang Y. Insulin like growth factor-I: a critical mediator of the skeletal response to parathyroid hormone. Curr Mol Pharmacol. 2012;5:135–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    Article  CAS  PubMed  Google Scholar 

  36. Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. Peak bone mass and its regulation. In: Glorieux FH, Pettifor FM, Jüppner H, editors. Pediatric bone. 2nd ed. Amsterdam: Elsevier Inc; 2012. p. 189–221.

    Chapter  Google Scholar 

  37. Parfitt AM. The two faces of growth: benefits and risks to bone integrity. Osteoporosis Int. 1994;4:382–98.

    Article  CAS  Google Scholar 

  38. Garn SM, Rohmann CG, Behar M, Viteri F, Guzman MA. Compact bone deficiency in protein-calorie malnutrition. Science. 1964;145:1444–5.

    Article  CAS  PubMed  Google Scholar 

  39. Thissen JP, Triest S, Maes M, Underwood LE, Ketelslegers JM. The decreased plasma concentration of insulin-like growth factor-I in protein-restricted rats is not due to decreased numbers of growth hormone receptors on isolated hepatocytes. J Endocrinol. 1990;124:159–65.

    Article  CAS  PubMed  Google Scholar 

  40. Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976;51:170–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Bala RM, Lopatka J, Leung A, McCoy E, McArthur RG. Serum immunoreactive somatomedin levels in normal adults, pregnant women at term, children at various ages, and children with constitutionally delayed growth. J Clin Endocrinol Metab. 1981;52:508–12.

    Article  CAS  PubMed  Google Scholar 

  42. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, Bonjour JP. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75:1060–5.

    CAS  PubMed  Google Scholar 

  43. Laron Z. Insulin-like growth factor-I treatment of children with Laron syndrome (primary growth hormone insensitivity). Pediatr Endocrinol Rev. 2008;5:766–71.

    PubMed  Google Scholar 

  44. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29:535–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Savage MO. Phenotypes, investigation and treatment of primary IGF-1 deficiency. Endocr Dev. 2013;24:138–49.

    Article  CAS  PubMed  Google Scholar 

  46. Bonjour JP, Chevalley T, Rizzoli R, Ferrari S. Gene-environment interactions in the skeletal response to nutrition and exercise during growth. Med Sport Sci. 2007;51:64–80.

    Article  PubMed  Google Scholar 

  47. Clavien H, Theintz G, Rizzoli R, Bonjour JP. Does puberty alter dietary habits in adolescents living in a western society? J Adolesc Health. 1996;19:68–75.

    Article  CAS  PubMed  Google Scholar 

  48. Daly RM. The effect of exercise on bone mass and structural geometry during growth. Med Sport Sci. 2007;51:33–49.

    Article  PubMed  Google Scholar 

  49. Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003;18:885–92.

    Article  CAS  PubMed  Google Scholar 

  50. Alexy U, Remer T, Manz F, Neu CM, Schoenau E. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr. 2005;82:1107–14.

    CAS  PubMed  Google Scholar 

  51. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R. High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res. 2008;23:131–42.

    Article  CAS  PubMed  Google Scholar 

  52. Bouxsein ML. Biomechanics of age-related fractures. In: Marcus RFD, Kelsey J, editors. Osteoporosis. San Diego: Academic Press; 2001. p. 509–34.

    Chapter  Google Scholar 

  53. Cooper C, Atkinson EJ, Hensrud DD, Wahner HW, O'Fallon WM, Riggs BL, Melton 3rd LJ. Dietary protein intake and bone mass in women. Calcif Tissue Int. 1996;58:320–5.

    Article  CAS  PubMed  Google Scholar 

  54. Gremion G, Rizzoli R, Slosman D, Theintz G, Bonjour JP. Oligo-amenorrheic long-distance runners may lose more bone in spine than in femur. Med Sci Sports Exerc. 2001;33:15–21.

    Article  CAS  PubMed  Google Scholar 

  55. Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG. Osteopenia in exercise-associated amenorrhea using ballet dancers as a model: a longitudinal study. J Clin Endocrinol Metab. 2002;87:3162–8.

    Article  CAS  PubMed  Google Scholar 

  56. Yeager KK, Agostini R, Nattiv A, Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25:775–7.

    Article  CAS  PubMed  Google Scholar 

  57. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39:1867–82.

    Article  PubMed  Google Scholar 

  58. Misra M, Klibanski A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology. 2011;93:65–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Warren MP. Endocrine manifestations of eating disorders. J Clin Endocrinol Metab. 2011;96:333–43.

    Article  CAS  PubMed  Google Scholar 

  60. Grinspoon S, Thomas E, Pitts S, Gross E, Mickley D, Miller K, Herzog D, Klibanski A. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med. 2000;133:790–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Misra M, Prabhakaran R, Miller KK, et al. Weight gain and restoration of menses as predictors of bone mineral density change in adolescent girls with anorexia nervosa-1. J Clin Endocrinol Metab. 2008;93:1231–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Livingstone C. Insulin-like growth factor-I (IGF-I) and clinical nutrition. Clin Sci (Lond). 2013;125:265–80.

    Article  CAS  Google Scholar 

  63. Misra M, Prabhakaran R, Miller KK, et al. Prognostic indicators of changes in bone density measures in adolescent girls with anorexia nervosa-II. J Clin Endocrinol Metab. 2008;93:1292–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Soyka LA, Misra M, Frenchman A, Miller KK, Grinspoon S, Schoenfeld DA, Klibanski A. Abnormal bone mineral accrual in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 2002;87:4177–85.

    Article  CAS  PubMed  Google Scholar 

  65. Cao JJ, Pasiakos SM, Margolis LM, Sauter ER, Whigham LD, McClung JP, Young AJ, Combs GF, Jr. (2014) Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized controlled trial. The American journal of clinical nutrition 99(2):400-407.

    Google Scholar 

  66. Cosman F, Ruffing J, Zion M, Uhorchak J, Ralston S, Tendy S, McGuigan FE, Lindsay R, Nieves J. Determinants of stress fracture risk in United States Military Academy cadets. Bone. 2013;55:359–66.

    Article  PubMed  Google Scholar 

  67. Shapses SA, Riedt CS. Bone, body weight, and weight reduction: what are the concerns? J Nutr. 2006;136:1453–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Shapses SA, Sukumar D. Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012;32:287–309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Sukumar D, Ambia-Sobhan H, Zurfluh R, Schlussel Y, Stahl TJ, Gordon CL, Shapses SA. Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Res. 2011;26:1339–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Roughead ZK, Johnson LK, Lykken GI, Hunt JR. Controlled high meat diets do not affect calcium retention or indices of bone status in healthy postmenopausal women. J Nutr. 2003;133:1020–6.

    CAS  PubMed  Google Scholar 

  71. Cao JJ, Johnson LK, Hunt JR. A diet high in meat protein and potential renal acid load increases fractional calcium absorption and urinary calcium excretion without affecting markers of bone resorption or formation in postmenopausal women. J Nutr. 2011;141(3):391–7.

    Article  CAS  PubMed  Google Scholar 

  72. Fenton TR, Tough SC, Lyon AW, Eliasziw M, Hanley DA. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality. Nutr J. 2011;10:41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Calvez J, Poupin N, Chesneau C, Lassale C, Tome D. Protein intake, calcium balance and health consequences. Eur J Clin Nutr. 2012;66:281–95.

    Article  CAS  PubMed  Google Scholar 

  74. Hanley DA, Whiting SJ. Does a high dietary acid content cause bone loss, and can bone loss be prevented with an alkaline diet? J Clin Densitom. 2013;16:420–5.

    Article  PubMed  Google Scholar 

  75. Fenton TR, Eliasziw M, Tough SC, Lyon AW, Brown JP, Hanley DA. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study. BMC Musculoskelet Disord. 2010;11:88.

    Article  PubMed Central  PubMed  Google Scholar 

  76. McLean RR, Qiao N, Broe KE, Tucker KL, Casey V, Cupples LA, Kiel DP, Hannan MT. Dietary acid load is not associated with lower bone mineral density except in older men. J Nutr. 2011;141:588–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Metz JA, Anderson JJ, Gallagher Jr PN. Intakes of calcium, phosphorus, and protein, and physical-activity level are related to radial bone mass in young adult women. Am J Clin Nutr. 1993;58:537–42.

    CAS  PubMed  Google Scholar 

  78. Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DP. Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res. 2000;15:2504–12.

    Article  CAS  PubMed  Google Scholar 

  79. Geinoz G, Rapin CH, Rizzoli R, Kraemer R, Buchs B, Slosman D, Michel JP, Bonjour JP. Relationship between bone mineral density and dietary intakes in the elderly. Osteoporosis Int. 1993;3:242–8.

    Article  CAS  Google Scholar 

  80. Wolfe RR, Miller SL, Miller KB. Optimal protein intake in the elderly. Clin Nutr. 2008;27:675–84.

    Article  CAS  PubMed  Google Scholar 

  81. Elango R, Humayun MA, Ball RO, Pencharz PB. Evidence that protein requirements have been significantly underestimated. Curr Opin Clin Nutr Metab Care. 2010;13:52–7.

    Article  CAS  PubMed  Google Scholar 

  82. Bonjour JP. Protein intake and bone health. Int J Vitam Nutr Res. 2011;81:134–42.

    Article  CAS  PubMed  Google Scholar 

  83. Heaney RP. Calcium, dairy products and osteoporosis. J Am Coll Nutr. 2000;19:83S–99.

    Article  CAS  PubMed  Google Scholar 

  84. Bell J, Whiting SJ. Elderly women need dietary protein to maintain bone mass. Nutr Rev. 2002;60:337–41.

    Article  PubMed  Google Scholar 

  85. Dawson-Hughes B, Harris SS. Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am J Clin Nutr. 2002;75:773–9.

    CAS  PubMed  Google Scholar 

  86. Dawson-Hughes B, Harris SS, Rasmussen H, Song L, Dallal GE. Effect of dietary protein supplements on calcium excretion in healthy older men and women. J Clin Endocrinol Metab. 2004;89:1169–73.

    Article  CAS  PubMed  Google Scholar 

  87. Abelow BJ, Holford TR, Insogna KL. Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif Tissue Int. 1992;50:14–8.

    Article  CAS  PubMed  Google Scholar 

  88. Frassetto LA, Todd KM, Morris Jr RC, Sebastian A. Worldwide incidence of hip fracture in elderly women: relation to consumption of animal and vegetable foods. J Gerontol A Biol Sci Med Sci. 2000;55:M585–92.

    Article  CAS  PubMed  Google Scholar 

  89. Bonjour JP, Schurch MA, Rizzoli R. Nutritional aspects of hip fractures. Bone. 1996;18:139S–44.

    Article  CAS  PubMed  Google Scholar 

  90. Abellan van Kan G, Gambassi G, de Groot LC, et al. Nutrition and aging. The Carla Workshop. J Nutr Health Aging. 2008;12:355–64.

    Article  CAS  PubMed  Google Scholar 

  91. De Laet C, Kanis JA, Oden A, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporosis Int. 2005;16:1330–8.

    Article  Google Scholar 

  92. Wengreen HJ, Munger RG, West NA, Cutler DR, Corcoran CD, Zhang J, Sassano NE. Dietary protein intake and risk of osteoporotic hip fracture in elderly residents of Utah. J Bone Miner Res. 2004;19:537–45.

    Article  PubMed  Google Scholar 

  93. Dargent-Molina P, Sabia S, Touvier M, Kesse E, Breart G, Clavel-Chapelon F, Boutron-Ruault MC. Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study. J Bone Miner Res. 2008;23:1915–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Clavel-Chapelon F, van Liere MJ, Giubout C, Niravong MY, Goulard H, Le Corre C, Hoang LA, Amoyel J, Auquier A, Duquesnel E. E3N, a French cohort study on cancer risk factors. E3N Group. Etude Epidemiologique aupres de femmes de l'Education Nationale. Eur J Cancer Prev. 1997;6:473–8.

    Article  CAS  PubMed  Google Scholar 

  95. Delmi M, Rapin CH, Bengoa JM, Delmas PD, Vasey H, Bonjour JP. Dietary supplementation in elderly patients with fractured neck of the femur. Lancet. 1990;335:1013–6.

    Article  CAS  PubMed  Google Scholar 

  96. Feskanich D, Willett WC, Stampfer MJ, Colditz GA. Protein consumption and bone fractures in women. Am J Epidemiol. 1996;143:472–9.

    Article  CAS  PubMed  Google Scholar 

  97. Meyer HE, Pedersen JI, Loken EB, Tverdal A. Dietary factors and the incidence of hip fracture in middle-aged Norwegians. A prospective study. Am J Epidemiol. 1997;145:117–23.

    Article  CAS  PubMed  Google Scholar 

  98. Darling AL, Millward DJ, Torgerson DJ, Hewitt CE, Lanham-New SA. Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr. 2009;90:1674–92.

    Article  CAS  PubMed  Google Scholar 

  99. Mussolino ME, Looker AC, Madans JH, Langlois JA, Orwoll ES. Risk factors for hip fracture in white men: the NHANES I Epidemiologic Follow-up Study. J Bone Miner Res. 1998;13:918–24.

    Article  CAS  PubMed  Google Scholar 

  100. Sugimoto T, Nishiyama K, Kuribayashi F, Chihara K. Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)-2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res. 1997;12:1272–9.

    Article  CAS  PubMed  Google Scholar 

  101. Garnero P, Sornay-Rendu E, Delmas PD. Low serum IGF-1 and occurrence of osteoporotic fractures in postmenopausal women. Lancet. 2000;355:898–9.

    Article  CAS  PubMed  Google Scholar 

  102. Castaneda C, Gordon PL, Fielding RA, Evans WJ, Crim MC. Marginal protein intake results in reduced plasma IGF-I levels and skeletal muscle fiber atrophy in elderly women. J Nutr Health Aging. 2000;4:85–90.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Bonjour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonjour, JP., Chevalley, T., Amman, P., Rizzoli, R. (2015). Protein Intake and Bone Health. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics