Skip to main content

Efficient Double-Stranded RNA Production Methods for Utilization in Plant Virus Control

  • Protocol
  • First Online:
Plant Virology Protocols

Abstract

Double-stranded RNA (dsRNA) is an inducer molecule of the RNA silencing (RNA interference, RNAi) pathway that is present in all higher eukaryotes and controls gene expression at the posttranscriptional level. This mechanism allows the cell to recognize aberrant genetic material in a highly sequence specific manner. This ultimately leads to degradation of the homologous target sequence, rendering the plant cell resistant to subcellular pathogens. Consequently, dsRNA-mediated resistance has been exploited in transgenic plants to convey resistance against viruses. In addition, it has been shown that enzymatically synthesized specific dsRNA molecules can be applied directly onto plant tissue to induce resistance against the cognate virus. This strongly implies that dsRNA molecules are applicable as efficacious agents in crop protection, which will fuel the demand for cost-effective dsRNA production methods. In this chapter, the different methods for dsRNA production—both in vitro and in vivo—are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanford JC, Johnston SA (1985) The concept of parasite derived resistance-deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  2. Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  PubMed  CAS  Google Scholar 

  3. Padmanabhan C, Zhang X, Jin H (2009) Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol 12:465–472

    Article  PubMed  CAS  Google Scholar 

  4. Wang MB, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant Microbe Interact 25:1275–1285

    Article  PubMed  CAS  Google Scholar 

  5. Duan CG, Wang CH, Guo HS (2012) Application of RNA silencing to plant disease resistance. Silence 3:5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  PubMed  CAS  Google Scholar 

  7. Martínez de Alba AE, Elvira-Matelot E, Vaucheret H (2013) Gene silencing in plants: a diversity of pathways. Biochim Biophys Acta 1829:1300–1308

    Article  PubMed  Google Scholar 

  8. Aalto AP, Sarin LP, van Dijk AA, Saarma M, Poranen MM, Arumäe U, Bamford DH (2007) Large-scale production of dsRNA for siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase. RNA 13:422–429

    Google Scholar 

  9. Timmons L (2006) Construction of plasmids for RNA interference and in vitro transcription of double-stranded RNA. Methods Mol Biol 351:109–117

    PubMed  CAS  Google Scholar 

  10. Makeyev EV, Bamford DH (2000) Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage phi6. EMBO J 19:124–133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Sun Y, Qiao X, Mindich L (2004) Construction of carrier state viruses with partial genomes of the segmented dsRNA bacteriophages. Virology 319:274–279

    Article  PubMed  CAS  Google Scholar 

  12. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112

    Article  PubMed  CAS  Google Scholar 

  13. Tenllado F, Díaz-Ruíz JR (2001) Double-stranded RNA-mediated interference with plant virus infection. J Virol 75:12288–12297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Holeva MC, Sclavounos AP, Kyriakopoulou PE, Voloudakis AE (2006) In vitro or in vivo produced dsRNA induces tobacco and tomato resistance to Cucumber mosaic virus (CMV). 13th Hellenic phytopathological congress of the Greek phytopathological society, Athens, 15–19 Oct 2006

    Google Scholar 

  15. Holeva MC, Sclavounos, AP, Kyriakopoulou PE, Voloudakis AE (2007) External application of dsRNA of the capsid protein (CP) or 2b gene of CMV reduces the severity of CMV-infection in tobacco. XIII IS-MPMI congress, Sorrento, Italy, 21–27 July 2007

    Google Scholar 

  16. Carbonell A, Martínez de Alba AE, Flores R, Gago S (2008) Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology 371:44–53

    Article  PubMed  CAS  Google Scholar 

  17. Yin G, Sun Z, Liu N, Zhang L, Song Y, Zhu C, Wen F (2009) Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Appl Microbiol Biotechnol 84:323–333

    Article  PubMed  CAS  Google Scholar 

  18. Tenllado F, Barajas D, Vargas M, Atencio FA, González-Jara P, Díaz-Ruíz JR (2003) Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing. Mol Plant-Microbe Interact 16:149–158

    Article  PubMed  CAS  Google Scholar 

  19. Tenllado F, Martinez-García B, Vargas M, Díaz-Ruíz JR (2003) Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tenllado F, Llave C, Díaz-Ruíz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    Article  PubMed  CAS  Google Scholar 

  21. Romanovskaya A, Sarin LP, Bamford DH, Poranen MM (2013) High-throughput purification of double-stranded RNA molecules using convective interaction media monolithic anion exchange columns. J Chromatogr A 1278:54–60

    Article  PubMed  CAS  Google Scholar 

  22. Romanovskaya A, Paavilainen H, Nygårdas M, Bamford DH, Hukkanen V, Poranen MM (2012) Enzymatically produced pools of canonical and Dicer-substrate siRNA molecules display comparable gene silencing and antiviral activities against herpes simplex virus. PLoS One 7:e51019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Yang H, Makeyev EV, Bamford DH (2001) Comparison of polymerase subunits from double-stranded RNA bacteriophages. J Virol 75:11088–11095

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Sarin LP, Poranen MM, Lehti NM, Ravantti JJ, Koivunen MR, Aalto AP, van Dijk AA, Stuart DI, Grimes JM, Bamford DH (2009) Insights into the pre-initiation events of bacteriophage phi6 RNA-dependent RNA polymerase: towards the assembly of a productive binary complex. Nucleic Acids Res 37:1182–1192

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Poranen MM, Salgado PS, Koivunen MRL, Wright S, Bamford DH, Stuart DI, Grimes JM (2008) Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase. Nucleic Acids Res 36:6633–6644

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Wright S, Poranen MM, Bamford DH, Stuart DI, Grimes JM (2012) Non-catalytic ions direct the RNA-dependent RNA polymerase of bacterial dsRNA virus phi6 from de novo initiation to elongation. J Virol 86:2837–2849

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Vargas M, Martinez-García B, Díaz-Ruíz JR, Tenllado F (2008) Transient expression of homologous hairpin RNA interferes with PVY transmission by aphids. Virol J 5:42

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by: (a) a grant to FT from the Spanish Ministry of Science and Technology (BIO2009-10172), (b) the Academy of Finland (grants 250113, 256069, and 272507 to M.M.P. and grants 256197, 255342, and 256518 to D.H.B.), and (c) the COST FA0806 to A.E.V., M.C.H., P.L.S., D.H.B., M.M.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas E. Voloudakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Voloudakis, A.E. et al. (2015). Efficient Double-Stranded RNA Production Methods for Utilization in Plant Virus Control. In: Uyeda, I., Masuta, C. (eds) Plant Virology Protocols. Methods in Molecular Biology, vol 1236. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1743-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1743-3_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1742-6

  • Online ISBN: 978-1-4939-1743-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics