Skip to main content

HIV-1 and TB: How Humanized Mice Can Help

  • Chapter
  • First Online:
  • 882 Accesses

Abstract

Tuberculosis (TB) and human immunodeficiency virus (HIV) have been closely linked since the emergence of acquired immune deficiency syndrome (AIDS), to date the main focus of research has been on studying the diseases separately. The epidemiology, clinical manifestations, and management of both HIV and Mycobacterium tuberculosis (M.tb) infections are different and far more involved in coinfected compared to monoinfected individuals. There are complex interacting forces driving pathogenesis of each disease, and our understanding of these mechanisms remains inadequate to best develop preventive measures against the “dual disease.” Deficiencies in our knowledge mainly stem from the lack of a standardized animal model for studying the synergy between bona fide HIV and M.tb. Although conventional mouse models have improved our understanding of TB outside of the context of HIV, wild-type mice are not amendable for HIV/TB coinfection research. Improvements in the humanized mouse model are allowing HIV-1 and TB copathogenesis studies. Here, we discuss the possibilities for TB/HIV-1 coinfection in humanized mice and the limitations and suggestions on improving the humanized mouse model specifically for TB/HIV-1 coinfection studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Health Organization: Global tuberculosis Report 2012. Available: http://www.who.int/tb/publications/global_report/2012/en/index.html. 2012. Accessed: Oct. 2012.

  2. UNAIDS: “State of the Epidemic”. UNAIDS report on the global AIDS epidemic 2012. http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/20121120_UNAIDS_Global_Report_2012_en.pdf. 2012. Accessed: 13 March 2013.

  3. Getahun H, Gunneberg C, Granich R, Nunn P. HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis. 2010;50(Suppl 3). p. 201–7. doi:10.1086/651492. PubMed PMID: 20397949.

    Article  Google Scholar 

  4. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163(9):1009–21. PubMed PMID: 12742798.

    Article  PubMed  Google Scholar 

  5. Tabarsi P, Chitsaz E, Moradi A, Baghaei P, Farnia P, Marjani M, Shamai M, Amiri M, Nikaein S, Mansouri D, Masjedi M, Altice F. Treatment outcome, mortality and their predictors among HIV-associated tuberculosis patients. Int J STD AIDS. 2012;23(9):e1–4. doi:10.1258/ijsa.2009.009093. PubMed PMID: 23033530.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Selwyn PA, Hartel D, Lewis VA, Schoenbaum EE, Vermund SH, Klein RS, Walker AT, Friedland GH. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med. 1989;320(9):545–50. PubMed PMID: 2915665.

    Article  CAS  PubMed  Google Scholar 

  7. Stoneburner R, Laroche E, Prevots R, Singh T, Blum S, Terry P, Reatrice S, Adler J. Survival in a cohort of human immunodeficiency virus-infected tuberculosis patients in New York City. Implications for the expansion of the AIDS case definition. Arch Intern Med. 1992;152(10):2033–7. PubMed PMID: 1358042.

    Article  CAS  PubMed  Google Scholar 

  8. Perriëns JH, Colebunders RL, Karahunga C, Willame JC, Jeugmans J, Kaboto M, Mukadi Y, Pauwels P, Ryder RW, Prignot J, et al. Increased mortality and tuberculosis treatment failure rate among human immunodeficiency virus (HIV) seropositive compared with HIV seronegative patients with pulmonary tuberculosis treated with “standard” chemotherapy in Kinshasa, Zaire. Am Rev Respir Dis. 1991;144(4):750–5. PubMed PMID: 1928943.

    Article  PubMed  Google Scholar 

  9. Nunn P, Brindle R, Carpenter L, Odhiambo J, Wasunna K, Newnham R, Githui W, Gathua S, Omwega M, McAdam K. Cohort study of human immunodeficiency virus infection in patients with tuberculosis in Nairobi, Kenya. Analysis of early (6-month) mortality. Am Rev Respir Dis. 1992;146(4):849–54. PubMed PMID: 1416409.

    Article  CAS  PubMed  Google Scholar 

  10. Small PM, Schecter GF, Goodman PC, Sande MA, Chaisson RE, Hopewell PC. Treatment of tuberculosis in patients with advanced human immunodeficiency virus infection. N Engl J Med. 1991;324(5):289–94. PubMed PMID: 1898769.

    Article  CAS  PubMed  Google Scholar 

  11. Chaisson RE, Schecter GF, Theuer CP, Rutherford GW, Echenberg DF, Hopewell PC. Tuberculosis in patients with the acquired immunodeficiency syndrome. Clinical features, response to therapy, and survival. Am Rev Respir Dis. 1987;136(3):570–4. PubMed PMID: 3631730.

    Article  CAS  PubMed  Google Scholar 

  12. Tabarsi P, Baghaei P, Mirsaeidi M, Amiri M, Alipanah N, Emami H, Novin A, Mansouri D, Masjedi MR, Velayati AA. Treatment outcome of tuberculosis patients diagnosed with human immunodeficiency virus infection in Iran. Saudi Med J. 2008;29(1):148–50. PubMed PMID: 18176695.

    PubMed  Google Scholar 

  13. van der Sande MA, Schim van der Loeff MF, Bennett RC, Dowling M, Aveika AA, Togun TO, Sabally S, Jeffries D, Adegbola RA, Sarge-Njie R, Jaye A, Corrah T, McConkey S, Whittle HC. Incidence of tuberculosis and survival after its diagnosis in patients infected with HIV-1 and HIV-2. AIDS. 2004;18(14):1933–41. PubMed PMID: 15353979.

    Article  Google Scholar 

  14. Collins KR, Quiñones-Mateu ME, Toossi Z, Arts EJ. Impact of tuberculosis on HIV-1 replication, diversity, and disease progression. AIDS Rev. 2002;4(3):165–76. PubMed PMID: 12416451.

    PubMed  Google Scholar 

  15. Diedrich CR, Flynn JL. HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect Immun. 2011;79(4):1407–17. doi:10.1128/IAI.01126-10. PubMed PMID: 21245275. Epub 2011/01/18. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zhou D, Shen Y, Chalifoux L, Lee-Parritz D, Simon M, Sehgal PK, Zheng L, Halloran M, Chen ZW. Mycobacterium bovis bacille Calmette-Guérin enhances pathogenicity of simian immunodeficiency virus infection and accelerates progression to AIDS in macaques: a role of persistent T cell activation in AIDS pathogenesis. J Immunol. 1999;162(4):2204–16. PubMed PMID: 9973496.

    CAS  PubMed  Google Scholar 

  17. Shen Y, Shen L, Sehgal P, Huang D, Qiu L, Du G, Letvin NL, Chen ZW. Clinical latency and reactivation of AIDS-related mycobacterial infections. J Virol. 2004;78(24):14023–32. PubMed PMID: 15564509.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Diedrich CR, Mattila JT, Klein E, Janssen C, Phuah J, Sturgeon TJ, Montelaro RC, Lin PL, Flynn JL. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS ONE. 2010;5(3):e9611. doi:10.1371/journal.pone.0009611. PubMed PMID: 20224771.

    Article  Google Scholar 

  19. Brenchley JM, Paiardini M. Immunodeficiency lentiviral infections in natural and non-natural hosts. Blood. 2011;118(4):847–54. doi:10.1182/blood-2010-12-325936. PubMed PMID: 21505193. Epub 2011/04/19.eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Potash MJ, Chao W, Bentsman G, Paris N, Saini M, Nitkiewicz J, Belem P, Sharer L, Brooks AI, Volsky DJ. A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc Natl Acad Sci U S A. 2005;102(10):3760–5. PubMed PMID: 15728729. Epub 2005/02/23. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hadas E, Borjabad A, Chao W, Saini M, Ichiyama K, Potash MJ, Volsky DJ. Testing antiretroviral drug efficacy in conventional mice infected with chimeric HIV-1. AIDS. 2007;21(8):905–9. PubMed PMID: 17457083.

    Article  CAS  PubMed  Google Scholar 

  22. Hadas E, Chao W, He H, Saini M, Daley E, Saifuddin M, Bentsman G, Ganz E, Volsky DJ, Potash MJ. Transmission of chimeric HIV by mating in conventional mice: prevention by pre-exposure antiretroviral therapy and reduced susceptibility during estrus. Dis Model Mech. 2013;6(5):1292–8. doi:10.1242/dmm.012617. PubMed PMID: 23886803. Epub 2013/07/25.eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Roshorm Y, Hong JP, Kobayashi N, McMichael AJ, Volsky DJ, Potash MJ, Takiguchi M, Hanke T. Novel HIV-1 clade B candidate vaccines designed for HLA-B*5101(+) patients protected mice against chimaeric ecotropic HIV-1 challenge. Eur J Immunol. 2009;39(7):1831–40. doi:10.1002/eji.200939309. PubMed PMID: 19585509.

    Article  CAS  PubMed  Google Scholar 

  24. Saini M, Hadas E, Volsky DJ, Potash MJ. Vaccine-induced protection from infection of mice by chimeric human immunodeficiency virus type 1, EcoHIV/NL4–3. Vaccine. 2007;25(52):8660–3. PubMed PMID: 18023943. Epub 2007/10/31.eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hanna Z, Priceputu E, Chrobak P, Hu C, Dugas V, Goupil M, Marquis M, de Repentigny L, Jolicoeur P. Selective expression of human immunodeficiency virus Nef in specific immune cell populations of transgenic mice is associated with distinct AIDS-like phenotypes. J Virol. 2009;83(19):9743–58. doi:10.1128/JVI.00125-09. PubMed PMID: 19605470. Epub 2009/07/15. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. De SK, Wohlenberg CR, Marinos NJ, Doodnauth D, Bryant JL, Notkins AL. Human chorionic gonadotropin hormone prevents wasting syndrome and death in HIV-1 transgenic mice. J Clin Invest. 1997;99(7):1484–91. PubMed PMID: 9119991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature. 1994;367(6459):188–93. PubMed PMID: 8114918.

    Article  CAS  PubMed  Google Scholar 

  28. Corboy JR, Buzy JM, Zink MC, Clements JE. Expression directed from HIV long terminal repeats in the central nervous system of transgenic mice. Science. 1992;258(5089):1804–8. PubMed PMID: 1465618.

    Article  CAS  PubMed  Google Scholar 

  29. Garza HH Jr, Prakash O, Carr DJ. Aberrant regulation of cytokines in HIV-1TAT72-transgenic mice. J Immunol. 1996;156(10):3631–7. PubMed PMID: 8621896.

    CAS  PubMed  Google Scholar 

  30. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop specific binding to TAR RNA. Cell. 1998;92(4):451–62. PubMed PMID: 9491887.

    Article  CAS  PubMed  Google Scholar 

  31. Sun J, Soos T, Kewalramani VN, Osiecki K, Zheng JH, Falkin L, Santambrogio L, Littman DR, Goldstein H. CD4-specific transgenic expression of human cyclin T1 markedly increases human immunodeficiency virus type 1 (HIV-1) production by CD4+ T lymphocytes and myeloid cells in mice transgenic for a provirus encoding a monocyte-tropic HIV-1 isolate. J Virol. 2006;80(4):1850–62. PubMed PMID: 16439541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Browning J, Horner JW, Pettoello-Mantovani M, Raker C, Yurasov S, DePinho RA, Goldstein H. Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proc Natl Acad Sci U S A. 1997;94(26):14637–41. PubMed PMID: 9405665.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sawada S, Gowrishankar K, Kitamura R, Suzuki M, Suzuki G, Tahara S, Koito A. Disturbed CD4+ T cell homeostasis and in vitro HIV-1 susceptibility in transgenic mice expressing T cell line-tropic HIV-1 receptors. J Exp Med. 1998;187(9):1439–49. PubMed PMID: 9565636.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Scanga CA, Bafica A, Sher A. Viral gene expression in HIV transgenic mice is activated by Mycobacterium tuberculosis and suppressed after antimycobacterial chemotherapy. J Infect Dis. 2007;195(2):246–54. PubMed PMID: 17191170. Epub 2006/12/11. eng.

    Article  CAS  PubMed  Google Scholar 

  35. Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV co-infection. PLoS Pathog. 2012;8(2):e1002464. doi:10.1371/journal.ppat.1002464. PubMed PMID: 22363214. Epub 2012/02/16. eng.

    Article  Google Scholar 

  36. Heuts F, Gavier-Widén D, Carow B, Juarez J, Wigzell H, Rottenberg ME. CD4+ cell-dependent granuloma formation in humanized mice infected with mycobacteria. Proc Natl Acad Sci U S A. 2013;110(16):6482–7. doi:10.1073/pnas.1219985110. Epub 2013 Apr 4. PubMed PMID: 23559373.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Jurado JO, Alvarez IB, Pasquinelli V, Martínez GJ, Quiroga MF, Abbate E, Musella RM, Chuluyan HE, García VE. Programmed death (PD)-1:PD-ligand 1/PD-ligand 2 pathway inhibits T cell effector functions during human tuberculosis. J Immunol. 2008;181(1):116–25. PubMed PMID: 18566376.

    Article  CAS  PubMed  Google Scholar 

  38. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H, Yasukawa M, Ishikawa F. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A. 2010;107(29):13022–7. doi:10.1073/pnas.1000475107. PubMed PMID: 20615947. Epub 2010/07/06.eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tanner A, Taylor SE, Decottignies W, Berges BK. Humanized Mice as a Model to Study Human Hematopoietic Stem Cell Transplantation. Stem Cells Dev. 2013;23(1):76–82. [Epub ahead of print] PubMed PMID: 23962058.

    Article  PubMed  Google Scholar 

  40. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92. PubMed PMID: 16410443. Epub 2006/01/12.eng.

    Article  CAS  PubMed  Google Scholar 

  41. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22. PubMed PMID: 17057712. Epub 2006/10/22.eng.

    Article  CAS  PubMed  Google Scholar 

  42. Jaiswal S, Pazoles P, Woda M, Shultz LD, Greiner DL, Brehm MA, Mathew A. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice. Immunology. 2012;136(3):334–43. doi:10.1111/j.1365-2567.2012.03585.x. PubMed PMID: 22384859.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Rajesh D, Zhou Y, Jankowska-Gan E, Roenneburg DA, Dart ML, Torrealba J, Burlingham WJ. Th1 and Th17 immunocompetence in humanized NOD/SCID/IL2rgammanull mice. Hum Immunol. 2010;71(6):551–9. doi:10.1016/j.humimm.2010.02.019. PubMed PMID: 20298731. Epub 2010/03/26.eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Calderon VE, Valbuena G, Goez Y, Judy BM, Huante MB, Sutjita P, Johnston RK, Estes DM, Hunter RL, Actor JK, Cirillo JD, Endsley JJ. A humanized mouse model of tuberculosis. PLoS ONE. 2013;8(5):e63331. doi:10.1371/journal.pone.0063331. PubMed PMID: 23691024.

    Article  Google Scholar 

  45. de Wit D, Wootton M, Dhillon J, Mitchison DA. The bacterial DNA content of mouse organs in the Cornell model of dormant tuberculosis. Tuber Lung Dis. 1995;76(6):555–62. PubMed PMID: 8593379.

    Article  CAS  PubMed  Google Scholar 

  46. McCune RM, Feldmann FM, Lambert HP, McDermott W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J Exp Med. 1966;123(3):445–68. PubMed PMID: 4957010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Scanga CA, Mohan VP, Joseph H, Yu K, Chan J, Flynn JL. Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun. 1999;67(9):4531–8. PubMed PMID: 10456896.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Lawn SD, Wilkinson RJ, Lipman MC, Wood R. Immune reconstitution and “unmasking” of tuberculosis during antiretroviral therapy. Am J Respir Crit Care Med. 2008;177(7):680–5. doi:10.1164/rccm.200709-1311PP. PubMed PMID: 18202347. Epub 2008/01/17. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Meintjes G, Rabie H, Wilkinson RJ, Cotton MF. Tuberculosis-associated immune reconstitution inflammatory syndrome and unmasking of tuberculosis by antiretroviral therapy. Clin Chest Med. 2009;30(4):797–810, x. doi:10.1016/j.ccm.2009.08.013. PubMed PMID: 19925968.

    Article  PubMed  Google Scholar 

  50. Sereti I, Rodger AJ, French MA. Biomarkers in immune reconstitution inflammatory syndrome: signals from pathogenesis. Curr Opin HIV AIDS. 2010;5(6):504–10. doi:10.1097/COH.0b013e32833ed774. PubMed PMID: 20966640.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–14. doi:10.1038/cmi.2012.2. PubMed PMID: 22327211. Epub 2012/02/13.eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Ippolito GC, Hoi KH, Reddy ST, Carroll SM, Ge X, Rogosch T, Zemlin M, Shultz LD, Ellington AD, Vandenberg CL, Georgiou G. Antibody repertoires in humanized NOD-scid-IL2Rγ(null) mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse. PLoS ONE. 2012;7(4):e35497. doi:10.1371/journal.pone.0035497. PubMed PMID: 22558161. Epub 2012/04/27.eng.

    Article  Google Scholar 

  53. Dharmadhikari A, Nardell E. Translational reviews: What animal models teach humans about tuberculosis. Am J Respir Cell Mol Biol. 2008;39:503–8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette Labuschagné .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Labuschagné, A., Jacobs, M. (2014). HIV-1 and TB: How Humanized Mice Can Help. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_38

Download citation

Publish with us

Policies and ethics