Skip to main content

Anti-VEGF and VEGFR Monoclonal Antibodies in RCC

  • Chapter
  • First Online:

Abstract

Renal cell carcinoma accounts for 2–3 % of all malignant diseases in adults. It is the seventh most common cancer in men and the ninth most common in women [1]. Its management has undergone a transformation in the past few years: novel targeted therapies have expanded considerably for patients with metastatic renal cell carcinoma (mRCC). Previously, systemic treatment was limited to cytokine therapy with interleukin (IL)-2 or interferon (IFN)-alpha, because mRCC is largely resistant to chemotherapy [2].

One of the exciting developments in mRCC research has been a better understanding of the molecular pathogenesis of clear cell RCC, the most common histologic variant. It involves von Hippel-Lindau (VHL) tumor suppressor gene inactivation. Normally VHL encodes a protein that is a component of a ligase for hypoxia-inducible factor (HIF). Under normal oxygen tension, ligase action inactivates HIF. Under hypoxic conditions or with VHL inactivation, HIF upregulates the transcription of multiple hypoxia-inducible genes, including those encoding vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor-alpha, and others that promote angiogenesis and cellular proliferation [3].

Both hereditary and sporadic mutations are associated with RCC development [45]. Four distinct types of hereditary RCC have been identified and linked to a genetic mutation: von Hippel-Lindau (VHL) syndrome, VHL tumor suppressor gene (chromosome 3p24-25); hereditary papillary renal carcinoma, c-MET proto-oncogene (chromosome 7q31-34); hereditary leiomyomatosis RCC, fumarate hydratase gene (chromosome 1q42.3-45); and Birt-Hogg-Dubé (BHD) syndrome, BHD tumor suppressor gene (chromosome 17p11.2). VHL gene mutations also occur in 70 % of sporadic clear cell RCC [45], and as clear cell RCC represents 80–85 % of all cases of RCC [6], VHL gene mutations are the most common genetic abnormality linked to RCC development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32.

    Article  CAS  PubMed  Google Scholar 

  2. Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med. 1996;335:865–75.

    Article  CAS  PubMed  Google Scholar 

  3. Rini BI. Vascular endothelial growth factor-targeted therapy in metastatic renal cell carcinoma. Cancer. 2009;115(10 suppl):2306–12.

    Article  CAS  PubMed  Google Scholar 

  4. Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol. 2003;170:2163–72.

    Article  CAS  PubMed  Google Scholar 

  5. Vira MA, Novakovic KR, Pinto PA, Linehan WM. Genetic basis of kidney cancer: a model for developing molecular-targeted therapies. BJU Int. 2007;99:1223–9.

    Article  CAS  PubMed  Google Scholar 

  6. Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol. 2003;27:612–24.

    Article  PubMed  Google Scholar 

  7. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  10. Ferrara N, Chen H, vis-Smyth T, et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998;4:336–40.

    Article  CAS  PubMed  Google Scholar 

  11. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380:435–9.

    Article  CAS  PubMed  Google Scholar 

  12. Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–8.

    Article  CAS  PubMed  Google Scholar 

  13. Bloch W, Huggel K, Sasaki T, et al. The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing. FASEB J. 2000;14:2373–6.

    CAS  PubMed  Google Scholar 

  14. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4–10.

    Article  CAS  PubMed  Google Scholar 

  15. Kaelin Jr WG. The von Hippel-Lindau protein, HIF hydroxylation, and oxygen sensing. Biochem Biophys Res Commun. 2005;338:627–38.

    Article  CAS  PubMed  Google Scholar 

  16. Folkman J. Antiangiogenesis agents. In: DeVita VT, Helmann S, Rosenberg SA, editors. Cancer principles and practice of oncology. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 2865–82.

    Google Scholar 

  17. Kaelin Jr WG. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13:680s–4.

    Article  CAS  PubMed  Google Scholar 

  18. Herbst C, Kosmehl H, Stiller KJ, et al. Evaluation of microvessel density by computerised image analysis in human renal cell carcinoma. Correlation to pT category, nuclear grade, proliferative activity and occurrence of metastasis. J Cancer Res Clin Oncol. 1998;124:141–7.

    Article  CAS  PubMed  Google Scholar 

  19. Jacobsen J, Grankvist K, Rasmuson T, et al. Expression of vascular endothelial growth factor protein in human renal cell carcinoma. BJU Int. 2004;93:297–302.

    Article  CAS  PubMed  Google Scholar 

  20. George DJ, Kaelin Jr WG. The von Hippel-Lindau protein, vascular endothelial growth factor, and kidney cancer. N Engl J Med. 2003;349:419–21.

    Article  PubMed  Google Scholar 

  21. Iliopoulos O. Molecular biology of renal cell cancer and the identification of therapeutic targets. J Clin Oncol. 2006;24:5593–600.

    Article  CAS  PubMed  Google Scholar 

  22. Kim KJ, Li B, Houck K, Winer J, Ferrara N. The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors. 1992;7:53–64.

    Article  CAS  PubMed  Google Scholar 

  23. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–4.

    Article  CAS  PubMed  Google Scholar 

  24. Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest. 1995;95:1789–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.

    CAS  PubMed  Google Scholar 

  26. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jain RK. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin Oncol. 2002;29:3–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64:3731–6.

    Article  CAS  PubMed  Google Scholar 

  29. Wildiers H, Guetens G, De BG, et al. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer. 2003;88:1979–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mancuso MR, Davis R, Norberg SM, et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest. 2006;116:2610–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.

    Article  CAS  PubMed  Google Scholar 

  32. Rini BI, Garcia JA, Cooney MM, et al. A phase I study of sunitinib plus bevacizumab in advanced solid tumors. Clin Cancer Res. 2009;15:6277–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Yang JC. Bevacizumab for patients with metastatic renal cancer: an update. Clin Cancer Res. 2004;10:6367S–70.

    Article  CAS  PubMed  Google Scholar 

  35. Viloria-Petit A, Crombet T, Jothy S, et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res. 2001;61:5090–101.

    CAS  PubMed  Google Scholar 

  36. Bukowski RM, Kabbinavar FF, Figlin RA, et al. Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J Clin Oncol. 2007;25:4536–41.

    Article  CAS  PubMed  Google Scholar 

  37. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–11.

    Article  PubMed  Google Scholar 

  38. Escudier B, Bellmunt J, Négrier S, et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol. 2010;28(13):2144–50.

    Article  CAS  PubMed  Google Scholar 

  39. Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Ou SS, Archer L, Atkins JN, Picus J, Czaykowski P, Dutcher J, Small EJ. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol. 2008;26(33):5422–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Archer L, Atkins JN, Picus J, Czaykowski P, Dutcher J, Small EJ. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28(13):2137–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Négrier S, Gravis G, Pérol D, et al. Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomised phase 2 trial. Lancet Oncol. 2011;12(7):673–80.

    Article  PubMed  Google Scholar 

  42. Melichar B, Bracarda S, Matveev V, et al. BEVLiN: prospective study of the safety and efficacy of first-line bevacizumab (BEV) plus low-dose interferon-α2a (IFN) in patients (pts) with metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2011;29:(suppl; abstr 4546).

    Google Scholar 

  43. Rini BI, Bellmunt J, Alyzasova AV, et al. Randomized phase IIIb trial of temsirolimus and bevacizumab versus interferon and bevacizumab in metastatic renal cell carcinoma: results from INTORACT. Proceedings of European Society of Medical Oncology Congress LBA21, Vienna, Austria September 28–October 2, 2012.

    Google Scholar 

  44. Ravaud A, Barrios C, Anak O, et al. Randomized phase II study of first-line everolimus plus bevacizumab versus interferon alfa-2A plus bevacizumab in patients with metastatic renal cell carcinoma: RECORD-2. Proceedings of European Society of Medical Oncology Congress Abstract 7830, Vienna, Austria September 28–October 2, 2012.

    Google Scholar 

  45. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  CAS  PubMed  Google Scholar 

  46. Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.

    Article  CAS  PubMed  Google Scholar 

  47. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333:328–35.

    Article  CAS  PubMed  Google Scholar 

  48. Ferrantini M, Capone I, Belardelli F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89:884–93.

    Article  CAS  PubMed  Google Scholar 

  49. Melichar B, Koralewski P, Ravaud A, et al. First-line bevacizumab combined with reduced dose interferon-alpha2a is active in patients with metastatic renal cell carcinoma. Ann Oncol. 2008;19(8):1470–6.

    Article  CAS  PubMed  Google Scholar 

  50. Bracarda S, Koralewski R, Pluzanska A, et al. Bevacizumab/interferon-alpha2a provides a progression-free survival benefit in all prespecified patient subgroups as first-line treatment of metastatic renal cell carcinoma (AVOREN). Eur J Cancer Suppl. 2007;5:281–2.

    Article  Google Scholar 

  51. Escudier B, Eisen T, Porta C, et al. ESMO Guidelines Working Group. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23 suppl 7:vii65–71.

    Google Scholar 

  52. Feldman DR, Baum MS, Ginsberg MS, et al. Phase I trial of Bevacizumab plus escalated doses of Sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:1432–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sosman J, Flaherty K, Atkins M, et al. Updated results of phase I trial of Sorafenib (S) and Bevacizumab (B) in patients with metastatic renal cell cancer (mRCC). J Clin Oncol. 2008;26(suppl 6; abstr 5011).

    Google Scholar 

  54. Azad NS, Posadas EM, Kwitkowski VE, et al. Combination targeted therapy with Sorafenib and Bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol. 2008;26:3709–14.

    Article  CAS  PubMed  Google Scholar 

  55. Shahbazian D, Roux PP, Mieulet V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 2006;25:2781–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. McDermott DF, Manola J, Pins M, et al. The BEST trial (E2804): a randomized phase II study of VEGF, RAF kinase, and mTOR combination targeted therapy (CTT) with bevacizumab (bev), sorafenib (sor), and temsirolimus (tem) in advanced renal cell carcinoma. J Clin Oncol. 2013;31(suppl; abstr 345).

    Google Scholar 

  57. Negrier S, Perol D, Bahleva R, et al. A phase I study of pazopanib (P) combined with bevacizumab (B) in patients with metastatic renal cell carcinoma (mRCC) or other advanced refractory tumors. J Clin Oncol. 2012;30(suppl; abstr 4614).

    Google Scholar 

  58. Merchan JR, Pitot HC, Qin R, et al. Phase I/II trial of CCI 779 and Bevacizumab in advanced renal cell carcinoma (RCC): safety and activity in RTKI refractory RCC patients. J Clin Oncol. 2009;27(suppl; abstr 5039).

    Google Scholar 

  59. Hainsworth JD, Spigel DR, Burris HA, et al. Phase II trial of bevacizumab and everolimus in patients with advanced renal cell carcinoma. J Clin Oncol. 2010;28(13):2131–6.

    Article  CAS  PubMed  Google Scholar 

  60. Negrier S, Gravis G, Perol D, et al. Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomised phase 2 trial. Lancet Oncol. 2011;12:673–80.

    Article  CAS  PubMed  Google Scholar 

  61. Hainsworth JD, Sosman JA, Spigel DR, Edwards DL, Baughman C, Greco A. Treatment of metastatic renal cell carcinoma with a combination of Bevacizumab and Erlotinib. J Clin Oncol. 2005;23:7889–96.

    Article  CAS  PubMed  Google Scholar 

  62. Hainsworth JD, Spigel DR, Sosman JA, et al. Treatment of advanced renal cell carcinoma with the combination bevacizumab/erlotinib/imatinib: a phase I/II trial. Clin Genitourin Cancer. 2007;5:427–32.

    Article  CAS  PubMed  Google Scholar 

  63. Lockhart AC, Rothenberg ML, Dupont J, et al. Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol. 2010;28(2):207–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Escudier M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Escudier, B., Albiges, L. (2015). Anti-VEGF and VEGFR Monoclonal Antibodies in RCC. In: Bukowski, R., Figlin, R., Motzer, R. (eds) Renal Cell Carcinoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1622-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1622-1_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1621-4

  • Online ISBN: 978-1-4939-1622-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics