Skip to main content

Quantitative Metabolomics Using ID-MS

  • Protocol
  • First Online:
Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1191))

Abstract

Quantitative intracellular metabolite measurements are essential for systems biology and modeling of cellular metabolism. The MS-based quantification is error prone because (1) several sampling processing steps have to be performed, (2) the sample contains a complex mixture of partly compounds with the same mass and similar retention time, and (3) especially salts influence the ionization efficiency. Therefore internal standards are required, best for each measured compound. The use of labeled biomass, 13C extract, is a valuable tool, reducing the standard deviations of intracellular concentration measurements significantly (especially regarding technical reproducibility). Using different platforms, i.e., LC-MS and GC-MS, a large number of different metabolites can be quantified (currently about 110).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123

    Article  PubMed  Google Scholar 

  2. Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164–171

    Article  CAS  PubMed  Google Scholar 

  3. Canelas AB, Ras C, ten Pierick A, van Dam JC, Heijnen JJ, van Gulik WM (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239

    Article  CAS  Google Scholar 

  4. Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81:7379–7389

    Article  CAS  PubMed  Google Scholar 

  5. Bolten CJ, Wittmann C (2008) Appropriate sampling for intracellular amino acid analysis in five phylogenetically different yeasts. Biotechnol Lett 30:1993–2000

    Article  CAS  PubMed  Google Scholar 

  6. de Jonge LP, Douma RD, Heijnen JJ, van Gulik WM (2012) Optimization of cold methanol quenching for quantitative metabolomics of Penicillium chrysogenum. Metabolomics 8:727–735

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gale EF (1947) Assimilation of amino acids by bacteria. I. Passage of certain amino acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. J Gen Microbiol 1:53–76

    Article  CAS  PubMed  Google Scholar 

  8. Bolten CJ, Kiefer P, Letisse F, Portais J-C, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–3849

    Article  CAS  PubMed  Google Scholar 

  9. Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154

    Article  PubMed  Google Scholar 

  10. Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79:6167–6173

    Article  CAS  PubMed  Google Scholar 

  11. Hajjaj H, Blanc PJ, Goma G, Francois J (1998) Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in flamentous fungi. FEMS Microbiol Lett 164:195–200

    Article  CAS  Google Scholar 

  12. Mashego MR, Wu L, Van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. a new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628

    Article  CAS  PubMed  Google Scholar 

  13. Strassburg K, Walther D, Takahashi H, Kanaya S, Kopka J (2010) Dynamic transcriptional and metabolic responses in yeast adapting to temperature stress. OMICS 14:249–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nasution U, van Gulik WM, Kleijn RJ, van Winden WA, Proell A, Heijnen JJ (2006) Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum. Biotechnol Bioeng 94:159–166

    Article  CAS  PubMed  Google Scholar 

  15. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Taymaz-Nikerel H, de Mey M, Ras C, ten Pierick A, Seifar RM, van Dam JC, Heijnen JJ, van Gulik WM (2009) Development and application of a differential method for reliable metabolome analysis in Escherichia coli. Anal Biochem 386:9–19

    Article  CAS  PubMed  Google Scholar 

  17. Lafaye A, Labarre J, Tabet J-C, Ezan E, Junot C (2005) Liquid chromatography-mass spectrometry and 15N metabolic labeling for quantitative metabolic profiling. Anal Chem 77:2026–2033

    Article  CAS  PubMed  Google Scholar 

  18. Seifar RM, Zhao Z, van Dam J, van Winden W, van Gulik W, Heijnen JJ (2008) Quantitative analysis of metabolites in complex biological samples using ion-pair reversed-phase liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr A 1187:103–110

    Article  CAS  PubMed  Google Scholar 

  19. Bennett BD, Yuan J, Kimball EH, Rabinowitz JD (2008) Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat Protoc 3:1299–1311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Vielhauer O, Zakhartsev M, Horn T, Takors R, Reuss M (2011) Simplified absolute metabolite quantification by gas chromatography-isotope dilution mass spectrometry on the basis of commercially available source material. J Chromatogr B Analyt Technol Biomed Life Sci 879(32):3859–3870

    Article  CAS  PubMed  Google Scholar 

  21. Coulier L, Bas R, Jespersen S, Verheij E, Van Der Werf MJ, Hankemeier T (2006) Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 78:6573–6582

    Article  CAS  PubMed  Google Scholar 

  22. Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511

    Article  CAS  PubMed  Google Scholar 

  23. van Dam JC, Eman MR, Frank J, Lange HC, van Dedem GWK, Heijnen JJ (2002) Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Anal Chim Acta 460:209–218

    Article  Google Scholar 

  24. van Dam JC, Ras C, ten Pierick A (2011) Analysis of glycolytic intermediates with ion chromatography-and gas chromatography-mass spectrometry. In: Metz TO (ed) Metabolic profiling. Human Press, New York, USA

    Google Scholar 

  25. Seifar RM, Ras C, van Dam JC, van Gulik WM, Heijnen JJ, van Winden WA (2009) Simultaneous quantification of free nucleotides in complex biological samples using ion pair reversed phase liquid chromatography isotope dilution tandem mass spectrometry. Anal Biochem 388:213–219

    Article  CAS  PubMed  Google Scholar 

  26. Cipollina C, ten Pierick A, Canelas AB, Seifar RM, van Maris AJ, van Dam JC, Heijnen JJ (2009) A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC-IDMS. J Chromatogr B 877:3231–3236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aljoscha Wahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wahl, S.A. et al. (2014). Quantitative Metabolomics Using ID-MS. In: Krömer, J., Nielsen, L., Blank, L. (eds) Metabolic Flux Analysis. Methods in Molecular Biology, vol 1191. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1170-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1170-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1169-1

  • Online ISBN: 978-1-4939-1170-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics