Skip to main content

The Brain-Gut Axis in Health and Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 817))

Abstract

The interaction between the brain and the gut has been recognized for many centuries. This bidirectional interaction occurs via neural, immunological and hormonal routes, and is important not only in normal gastrointestinal function but also plays a significant role in shaping higher cognitive function such as our feelings and our subconscious decision-making. Therefore, it remains unsurprising that perturbations in normal signalling have been associated with a multitude of disorders, including inflammatory and functional gastrointestinal disorders, and eating disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptimaine

ACC:

Anterior cingulate cortex

Ach:

Acetylcholine

ANS:

Autonomic nervous system

CCK1R:

Cholecystokinin 1 receptor

CNS:

Central nervous system

CRH:

Corticotropin-releasing factor

DMN:

Dorsal motor nucleus of the vagus

EMS:

Emotional motor system

FGF19:

Fibroblast growth factor 19

fMRI:

Functional magnetic resonance imaging

GALT:

Gut-associated lymphoid tissue

GI:

Gastrointestinal

GLP1:

Glucagon-like peptide-1

GPR:

G-protein coupled receptor

HPA:

Hypothalamic-pituitary-adrenal

IBD:

Inflammatory bowel disease

IBS:

Irritable bowel syndrome

KLB:

Klotho beta

NF- κB:

Nuclear factor κB

NPY:

Neuropeptide Y

OFC:

Orbitofrontal cortex

PAG:

Periaqueductal grey

PFC:

Prefrontal cortex

TNF-α:

Tumor necrosis factor-α

α7nAChR:

α7 nicotinic acetylcholine receptor

References

  1. Almy TP (1989) Historical perspectives of functional bowel disease. In: Snape WJ (ed) Pathogenesis of functional bowel disease. Plenum, New York, pp 1–11

    Chapter  Google Scholar 

  2. James W (1884) What is an emotion? Mind 9:188–205

    Article  Google Scholar 

  3. Cannon WB (1909) The influence of emotional states on the functions of the alimentary canal. Am J Med Sci 137:480–487

    Article  Google Scholar 

  4. Pavlov I (1910) The work of digestive glands (English translation from Russian by W. H. Thompson). Griffin, London

    Google Scholar 

  5. Wolf S, Wolff HG (1943) Human gastric function: an experimental study of a man and his stomach. Oxford University, New York

    Google Scholar 

  6. Beaumont W (1959) Experiments and observations on the gastric juice and the physiology of digestion (Facsimile of the original publication of 1833). Dover, New York

    Google Scholar 

  7. Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10(3):206–219

    Article  CAS  PubMed  Google Scholar 

  8. Bandler R, Keay KA (1996) The emotional motor system. In: Holstege G, Bandler R, Saper CB (eds) Progress in brain research. Elsevier, Amsterdam, pp 285–300

    Google Scholar 

  9. Holstege G, Bandler R, Saper CB (1996) The emotional motor system. Prog Brain Res 107:3–6

    Article  CAS  PubMed  Google Scholar 

  10. Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. Gut 47(6):861–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Mason P (2011) From descending pain modulation to obesity via the medullary raphe. Pain 152(3 Suppl):S20–S24

    Article  PubMed Central  PubMed  Google Scholar 

  12. Valentino RJ, Miselis RR, Pavcovich LA (1999) Pontine regulation of pelvic viscera: pharmacological target for pelvic visceral dysfunctions. Trends Pharmacol Sci 20(6):253–260

    Article  CAS  PubMed  Google Scholar 

  13. Browning KN, Travagli RA (2011) Plasticity of vagal brainstem circuits in the control of gastrointestinal function. Auton Neurosci 161(1–2):6–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Martinez V, Tache Y (2006) CRF1 receptors as a therapeutic target for irritable bowel syndrome. Curr Pharm Des 12(31):4071–4088

    Article  CAS  PubMed  Google Scholar 

  15. Welgan P, Meshkinpour H, Ma L (2000) Role of anger in antral motor activity in irritable bowel syndrome. Dig Dis Sci 45(2):248–251

    Article  CAS  PubMed  Google Scholar 

  16. Furness JB, Costa M (1974) The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 69:2–51

    CAS  PubMed  Google Scholar 

  17. Furness JB (2006) The enteric nervous system. Blackwell, Oxford

    Google Scholar 

  18. Jaenig W (2006) Integrative action of the autonomic nervous system. Cambridge University Press, New York

    Book  Google Scholar 

  19. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638

    CAS  PubMed  Google Scholar 

  20. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314

    Article  CAS  PubMed  Google Scholar 

  21. Lyte M, Vulchanova L, Brown DR (2011) Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 343(1):23–32

    Article  CAS  PubMed  Google Scholar 

  22. Stephens RL, Tache Y (1989) Intracisternal injection of a TRH analogue stimulates gastric luminal serotonin release in rats. Am J Physiol 256(2 Pt 1):G377–G383

    CAS  PubMed  Google Scholar 

  23. Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19(6):493–499

    Article  CAS  PubMed  Google Scholar 

  24. Welgan P, Meshkinpour H, Beeler M (1988) Effect of anger on colon motor and myoelectric activity in irritable bowel syndrome. Gastroenterology 94(5 Pt 1):1150–1156

    CAS  PubMed  Google Scholar 

  25. Gershon MD (1999) The enteric nervous system: a second brain. Hosp Pract (1995) 34(7):31-2, 5-8, 41-2 passim

    Google Scholar 

  26. Raybould HE (2010) Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci 153(1–2):41–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. McLaughlin JT, Lomax RB, Hall L, Dockray GJ, Thompson DG, Warhurst G (1998) Fatty acids stimulate cholecystokinin secretion via an acyl chain length-specific, Ca2 + -dependent mechanism in the enteroendocrine cell line STC-1. J Physiol 513(Pt 1):11–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ et al (2011) The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140(3):903–912

    Article  CAS  PubMed  Google Scholar 

  29. Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132(1):397–414

    Article  CAS  PubMed  Google Scholar 

  30. Rozengurt E, Sternini C (2007) Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol 7(6):557–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Clerc N, Furness JB (2004) Intrinsic primary afferent neurones of the digestive tract. Neurogastroenterol Motil 16(Suppl 1):24–27

    Article  PubMed  Google Scholar 

  32. Keita AV, Soderholm JD (2010) The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil 22(7):718–733

    Article  CAS  PubMed  Google Scholar 

  33. Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1248–1257

    Article  CAS  PubMed  Google Scholar 

  34. Gershon MD (2005) Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol 39(5 Suppl 3):S184–S193

    Article  PubMed  Google Scholar 

  35. de Lartigue G, de La Serre CB, Raybould HE (2011) Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 105(1):100–105

    Article  PubMed Central  PubMed  Google Scholar 

  36. Brookes SJ, Spencer NJ, Costa M, Zagorodnyuk VP (2013) Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol 10:286–296

    Google Scholar 

  37. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG et al (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510

    Article  CAS  PubMed  Google Scholar 

  39. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    Article  CAS  PubMed  Google Scholar 

  40. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8(6):411–420

    Article  CAS  PubMed  Google Scholar 

  41. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826

    Article  CAS  PubMed  Google Scholar 

  42. Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G et al (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132(1):26–37

    Article  CAS  PubMed  Google Scholar 

  43. McDermott JR, Leslie FC, D’Amato M, Thompson DG, Grencis RK, McLaughlin JT (2006) Immune control of food intake: enteroendocrine cells are regulated by CD4+ T lymphocytes during small intestinal inflammation. Gut 55(4):492–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mawe GM, Strong DS, Sharkey KA (2009) Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterol Motil 21(5):481–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Agostini A, Filippini N, Cevolani D, Agati R, Leoni C, Tambasco R et al (2011) Brain functional changes in patients with ulcerative colitis: a functional magnetic resonance imaging study on emotional processing. Inflamm Bowel Dis 17(8):1769–1777

    Article  PubMed  Google Scholar 

  46. Bradley RM, Kim M (2007). In: Bradley RM (ed) The role of the nucleus of the solitary tract in gustatory processing. Taylor & Francis Group, LLC, Boca Raton

    Google Scholar 

  47. Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B (2013) Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci 16(3):332–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Craig AD (1996) An ascending general homeostatic afferent pathway originating in lamina I. Prog Brain Res 107:225–242

    Article  CAS  PubMed  Google Scholar 

  49. Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A et al (2009) Functional organization of the human anterior insular cortex. Neurosci Lett 457(2):66–70

    Article  CAS  PubMed  Google Scholar 

  50. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214(5–6):519–534

    Article  PubMed  Google Scholar 

  51. Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G (2003) Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40(3):655–664

    Article  CAS  PubMed  Google Scholar 

  52. Pepino MY, Mennella JA (2005) Sucrose-induced analgesia is related to sweet preferences in children but not adults. Pain 119(1–3):210–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Foo H, Mason P (2009) Analgesia accompanying food consumption requires ingestion of hedonic foods. J Neurosci 29(41):13053–13062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kent S, Bluthe RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13(1):24–28

    Article  CAS  PubMed  Google Scholar 

  55. Calvo M, Dawes JM, Bennett DL (2012) The role of the immune system in the generation of neuropathic pain. Lancet Neurol 11(7):629–642

    Article  CAS  PubMed  Google Scholar 

  56. Sikandar S, Dickenson AH (2012) Visceral pain: the ins and outs, the ups and downs. Curr Opin Support Palliat Care 6(1):17–26

    Article  PubMed Central  PubMed  Google Scholar 

  57. Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381

    Article  CAS  PubMed  Google Scholar 

  58. Stengel A, Tache Y (2010) Corticotropin-releasing factor signaling and visceral response to stress. Exp Biol Med (Maywood) 235(10):1168–1178

    Article  CAS  Google Scholar 

  59. Tillisch K, Labus JS (2011) Advances in imaging the brain-gut axis: functional gastrointestinal disorders. Gastroenterology 140(2):407–411 e1

    Google Scholar 

  60. Mayer EA, Tillisch K (2011) The brain-gut axis in abdominal pain syndromes. Annu Rev Med 62:381–396

    Article  CAS  PubMed  Google Scholar 

  61. Mayer EA (2008) Clinical practice. Irritable bowel syndrome. N Engl J Med 358(16):1692–1699

    Article  CAS  PubMed  Google Scholar 

  62. Tornblom H, Van Oudenhove L, Sadik R, Abrahamsson H, Tack J, Simren M (2012) Colonic transit time and IBS symptoms: what’s the link? Am J Gastroenterol 107(5):754–760

    Article  PubMed  Google Scholar 

  63. Ludidi S, Conchillo JM, Keszthelyi D, Koning CJ, Vanhoutvin SA, Lindsey PJ et al (2012) Does meal ingestion enhance sensitivity of visceroperception assessment in irritable bowel syndrome? Neurogastroenterol Motil 24(1):47–53, e3

    Google Scholar 

  64. Shepherd SJ, Parker FC, Muir JG, Gibson PR (2008) Dietary triggers of abdominal symptoms in patients with irritable bowel syndrome: randomized placebo-controlled evidence. Clin Gastroenterol Hepatol 6(7):765–771

    Article  CAS  PubMed  Google Scholar 

  65. Johnston I, Nolan J, Pattni SS, Walters JR (2011) New insights into bile acid malabsorption. Curr Gastroenterol Rep 13(5):418–425

    Article  PubMed  Google Scholar 

  66. Jeffery IB, O’Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM et al (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006

    Article  PubMed  Google Scholar 

  67. Kidd M, Modlin IM, Gustafsson BI, Drozdov I, Hauso O, Pfragner R (2008) Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol 295(2):G260–G272

    Article  CAS  PubMed  Google Scholar 

  68. Hoffman JM, Tyler K, MacEachern SJ, Balemba OB, Johnson AC, Brooks EM et al (2012) Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4):844–854 e4

    Google Scholar 

  69. Spiller RC, Jenkins D, Thornley JP, Hebden JM, Wright T, Skinner M et al (2000) Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47(6):804–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Camilleri M, Katzka DA (2012) Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Genetic epidemiology and pharmacogenetics in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 302(10):G1075–G1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Shulman RJ, Eakin MN, Czyzewski DI, Jarrett M, Ou CN (2008) Increased gastrointestinal permeability and gut inflammation in children with functional abdominal pain and irritable bowel syndrome. J Pediatr 153(5):646–650

    Article  PubMed Central  PubMed  Google Scholar 

  72. Wallon C, Yang PC, Keita AV, Ericson AC, McKay DM, Sherman PM et al (2008) Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 57(1):50–58

    Article  CAS  PubMed  Google Scholar 

  73. Alonso C, Guilarte M, Vicario M, Ramos L, Rezzi S, Martinez C et al (2012) Acute experimental stress evokes a differential gender-determined increase in human intestinal macromolecular permeability. Neurogastroenterol Motil 24(8):740–746, e348–e349

    Google Scholar 

  74. Barbara G, Cremon C, De Giorgio R, Dothel G, Zecchi L, Bellacosa L et al (2011) Mechanisms underlying visceral hypersensitivity in irritable bowel syndrome. Curr Gastroenterol Rep 13(4):308–315

    Article  PubMed  Google Scholar 

  75. Dekel R, Drossman DA, Sperber AD (2013) The use of psychotropic drugs in irritable bowel syndrome. Expert Opin Investig Drugs 22(3):329–339

    Article  CAS  PubMed  Google Scholar 

  76. Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361(21):2066–2078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Bischoff SC (2009) Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 31(2):185–205

    Article  CAS  PubMed  Google Scholar 

  78. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN et al (2005) Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience 135(4):1295–1307

    Article  CAS  PubMed  Google Scholar 

  79. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9(5–8):125–134

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Meregnani J, Clarencon D, Vivier M, Peinnequin A, Mouret C, Sinniger V et al (2011) Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci 160(1–2):82–89

    Article  CAS  PubMed  Google Scholar 

  81. D’Haens GR, Panaccione R, Higgins PD, Vermeire S, Gassull M, Chowers Y et al (2011) The London Position Statement of the World Congress of Gastroenterology on Biological Therapy for IBD with the European Crohn’s and Colitis Organization: when to start, when to stop, which drug to choose, and how to predict response? Am J Gastroenterol 106(2):199–212

    Article  PubMed  Google Scholar 

  82. Tache Y, Bonaz B (2007) Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest 117(1):33–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859

    Article  CAS  PubMed  Google Scholar 

  84. Czeh B, Perez-Cruz C, Fuchs E, Flugge G (2008) Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: does hemisphere location matter? Behav Brain Res 190(1):1–13

    Article  PubMed  Google Scholar 

  85. Straub RH, Herfarth H, Falk W, Andus T, Scholmerich J (2002) Uncoupling of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis in inflammatory bowel disease? J Neuroimmunol 126(1–2):116–125

    Article  CAS  PubMed  Google Scholar 

  86. Kresse AE, Million M, Saperas E, Tache Y (2001) Colitis induces CRF expression in hypothalamic magnocellular neurons and blunts CRF gene response to stress in rats. Am J Physiol Gastrointest Liver Physiol 281(5):G1203–G1213

    CAS  PubMed  Google Scholar 

  87. Million M, Tache Y, Anton P (1999) Susceptibility of Lewis and Fischer rats to stress-induced worsening of TNB-colitis: protective role of brain CRF. Am J Physiol 276(4 Pt 1):G1027–G1036

    CAS  PubMed  Google Scholar 

  88. Shanks N, Windle RJ, Perks PA, Harbuz MS, Jessop DS, Ingram CD et al (2000) Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation. Proc Natl Acad Sci U S A 97(10):5645–5650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Gareau MG, Jury J, Yang PC, MacQueen G, Perdue MH (2006) Neonatal maternal separation causes colonic dysfunction in rat pups including impaired host resistance. Pediatr Res 59(1):83–88

    Article  PubMed  Google Scholar 

  90. Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM (2007) Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci 25(10):3091–3098

    Article  PubMed  Google Scholar 

  91. O’Mahony SM, Hyland NP, Dinan TG, Cryan JF (2011) Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 214(1):71–88

    Article  Google Scholar 

  92. Irwin MR (2008) Human psychoneuroimmunology: 20 years of discovery. Brain Behav Immun 22(2):129–139

    Article  CAS  PubMed  Google Scholar 

  93. Varghese AK, Verdu EF, Bercik P, Khan WI, Blennerhassett PA, Szechtman H et al (2006) Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology 130(6):1743–1753

    Article  CAS  PubMed  Google Scholar 

  94. Danese A, Pariante CM, Caspi A, Taylor A, Poulton R (2007) Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A 104(4):1319–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Tache Y, Bernstein CN (2009) Evidence for the role of the brain-gut axis in inflammatory bowel disease: depression as cause and effect? Gastroenterology 136(7):2058–2061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Bernstein CN, Niazi N, Robert M, Mertz H, Kodner A, Munakata J et al (1996) Rectal afferent function in patients with inflammatory and functional intestinal disorders. Pain 66(2–3):151–161

    Article  CAS  PubMed  Google Scholar 

  97. Bernstein CN, Frankenstein UN, Rawsthorne P, Pitz M, Summers R, McIntyre MC (2002) Cortical mapping of visceral pain in patients with GI disorders using functional magnetic resonance imaging. Am J Gastroenterol 97(2):319–327

    Article  PubMed  Google Scholar 

  98. Verma-Gandhu M, Verdu EF, Bercik P, Blennerhassett PA, Al-Mutawaly N, Ghia JE et al (2007) Visceral pain perception is determined by the duration of colitis and associated neuropeptide expression in the mouse. Gut 56(3):358–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765):557–567

    Article  PubMed  Google Scholar 

  100. Suzuki K, Jayasena CN, Bloom SR (2012) Obesity and appetite control. Exp Diabetes Res 2012:824305

    Article  PubMed Central  PubMed  Google Scholar 

  101. Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15(1):37–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Jauregui-Lobera I (2013) Neuropsychology of eating disorders: 1995–2012. Neuropsychiatr Dis Treat 9:415–430

    Article  PubMed Central  PubMed  Google Scholar 

  103. Kaye WH, Fudge JL, Paulus M (2009) New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci 10(8):573–584

    Article  CAS  PubMed  Google Scholar 

  104. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666

    CAS  PubMed  Google Scholar 

  105. Mayer EA (2011) Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 12(8):453–466

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasim Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Al Omran, Y., Aziz, Q. (2014). The Brain-Gut Axis in Health and Disease. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_6

Download citation

Publish with us

Policies and ethics