Skip to main content

Role of Epigenetics in Neural Differentiation: Implications for Health and Disease

  • Chapter
  • First Online:

Abstract

Neural differentiation is a complex process that requires highly accurate spatial and temporal regulation by extracellular and intracellular programs. Epigenetic mechanisms, such as DNA methylation, covalent histone posttranscriptional modifications, chromatin organization, and noncoding regulatory RNA, are key regulators of pluripotency maintenance and differentiation. The misregulation of these mechanisms could lead to neurological diseases and cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ajamian F, Suuronen T, Salminen A, Reeben M (2003) Upregulation of class II histone deacetylases mRNA during neural differentiation of cultured rat hippocampal progenitor cells. Neurosci Lett 346:57–60

    CAS  PubMed  Google Scholar 

  • Bai S, Ghoshal K, Datta J, Majumder S, Yoon SO, Jacob ST (2005) DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol Cell Biol 25:751–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barber BA, Rastegar M (2010) Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat 192:261–274

    CAS  PubMed  Google Scholar 

  • Ben-Shachar S, Chahrour M, Thaller C, Shaw CA, Zoghbi HY (2009) Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet 18:2431–2442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    CAS  PubMed  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    CAS  PubMed  Google Scholar 

  • Bird A (2008) The methyl-CpG-binding protein MeCP2 and neurological disease. Biochem Soc Trans 36:575–583

    CAS  PubMed  Google Scholar 

  • Blaheta RA, Cinatl J Jr (2002) Anti-tumor mechanisms of valproate: a novel role for an old drug. Med Res Rev 22:492–511

    CAS  PubMed  Google Scholar 

  • Bohacek J, Gapp K, Saab BJ, Mansuy IM (2013) Transgenerational epigenetic effects on brain functions. Biol Psychiatry 73:313–320

    PubMed  Google Scholar 

  • Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV, Krainc D (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci U S A 102:11023–11028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y (2010) Epigenetics and autoimmunity. J Autoimmun 34:J207–J219

    CAS  PubMed  Google Scholar 

  • Burgold T, Spreafico F, De Santa F, Totaro MG, Prosperini E, Natoli G, Testa G (2008) The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3:e3034

    PubMed Central  PubMed  Google Scholar 

  • Calvanese V, Fraga MF (2011) SirT1 brings stemness closer to cancer and aging. Aging (Albany NY) 3:162–167

    CAS  Google Scholar 

  • Calvanese V, Lara E, Suarez-Alvarez B, Abu Dawud R, Vazquez-Chantada M, Martinez-Chantar ML, Embade N, Lopez-Nieva P, Horrillo A, Hmadcha A, Soria B, Piazzolla D, Herranz D, Serrano M, Mato JM, Andrews PW, Lopez-Larrea C, Esteller M, Fraga MF (2010) Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci U S A 107:13736–13741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27:327–331

    CAS  PubMed  Google Scholar 

  • Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chopra V, Quinti L, Kim J, Vollor L, Narayanan KL, Edgerly C, Cipicchio PM, Lauver MA, Choi SH, Silverman RB, Ferrante RJ, Hersch S, Kazantsev AG (2012) The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep 2:1492–1497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32:591–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cloos PA, Christensen J, Agger K, Helin K (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22:1115–1140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coppede F (2012) Genetics and epigenetics of Parkinson’s disease. ScientificWorldJournal 2012:489830

    PubMed Central  PubMed  Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Defossez PA, Stancheva I (2011) Biological functions of methyl-CpG-binding proteins. Prog Mol Biol Transl Sci 101:377–398

    CAS  PubMed  Google Scholar 

  • Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219:243–250

    CAS  PubMed  Google Scholar 

  • Dietrich J, Han R, Yang Y, Mayer-Proschel M, Noble M (2006) CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 5:22

    PubMed Central  PubMed  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    CAS  PubMed  Google Scholar 

  • Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420

    CAS  PubMed  Google Scholar 

  • Fan G, Hutnick L (2005) Methyl-CpG binding proteins in the nervous system. Cell Res 15:255–261

    CAS  PubMed  Google Scholar 

  • Feng J, Chang H, Li E, Fan G (2005) Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79:734–746

    CAS  PubMed  Google Scholar 

  • Feng J, Fouse S, Fan G (2007) Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res 61:58R–63R

    CAS  PubMed  Google Scholar 

  • Flici H, Erkosar B, Komonyi O, Karatas OF, Laneve P, Giangrande A (2011) Gcm/Glide-dependent conversion into glia depends on neural stem cell age, but not on division, triggering a chromatin signature that is conserved in vertebrate glia. Development 138:4167–4178

    CAS  PubMed  Google Scholar 

  • Gillardon F, Mack M, Rist W, Schnack C, Lenter M, Hildebrandt T, Hengerer B (2008) MicroRNA and proteome expression profiling in early-symptomatic alpha-synuclein(A30P)-transgenic mice. Proteomics Clin Appl 2:697–705

    CAS  PubMed  Google Scholar 

  • Gray SG (2010) Targeting histone deacetylases for the treatment of Huntington’s disease. CNS Neurosci Ther 16:348–361

    CAS  PubMed  Google Scholar 

  • Gray SG (2011) Targeting Huntington’s disease through histone deacetylases. Clin Epigenetics 2:257–277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, Depinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322–326

    CAS  PubMed  Google Scholar 

  • Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147

    CAS  PubMed  Google Scholar 

  • Haberland M, Mokalled MH, Montgomery RL, Olson EN (2009a) Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 23:1625–1630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009b) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardy J (2010) Genetic analysis of pathways to Parkinson disease. Neuron 68:201–206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    CAS  PubMed  Google Scholar 

  • Hirabayashi Y, Gotoh Y (2010) Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci 11:377–388

    CAS  PubMed  Google Scholar 

  • Hsieh J, Eisch AJ (2010) Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind. Neurobiol Dis 39:73–84

    PubMed Central  PubMed  Google Scholar 

  • Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101:16659–16664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ittner LM, Gotz J (2011) Amyloid-beta and tau–a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:65–72

    CAS  PubMed  Google Scholar 

  • Jobe EM, Mcquate AL, Zhao X (2012) Crosstalk among epigenetic pathways regulates neurogenesis. Front Neurosci 6:59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jordan C, Li HH, Kwan HC, Francke U (2007) Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med Genet 8:36

    PubMed Central  PubMed  Google Scholar 

  • Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 133:142–150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanai Y (2008) Alterations of DNA methylation and clinicopathological diversity of human cancers. Pathol Int 58:544–558

    CAS  PubMed  Google Scholar 

  • Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35:870–880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kreth FW, Thon N, Tonn JC (2012) Low-grade gliomas. J Neurosurg 116:468–70; author reply 469–70

    PubMed  Google Scholar 

  • Kretsovali A, Hadjimichael C, Charmpilas N (2012) Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int 2012:184154

    PubMed Central  PubMed  Google Scholar 

  • Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295

    CAS  PubMed  Google Scholar 

  • Li X, Zhao X (2008) Epigenetic regulation of mammalian stem cells. Stem Cells Dev 17:1043–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lilja T, Heldring N, Hermanson O (2013) Like a rolling histone: epigenetic regulation of neural stem cells and brain development by factors controlling histone acetylation and methylation. Biochim Biophys Acta 1830:2354–2360

    CAS  PubMed  Google Scholar 

  • Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, Guy J, Kastan NR, Robinson ND, De Lima Alves F, Rappsilber J, Greenberg ME, Bird A (2013) Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 16:898–902

    CAS  PubMed  Google Scholar 

  • Macdonald VE, Howe LJ (2009) Histone acetylation: where to go and how to get there. Epigenetics 4:139–143

    CAS  PubMed  Google Scholar 

  • Macdonald JL, Roskams AJ (2008) Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev Dyn 237:2256–2267

    PubMed  Google Scholar 

  • Majdzadeh N, Wang L, Morrison BE, Bassel-Duby R, Olson EN, D’Mello SR (2008) HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev Neurobiol 68:1076–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez R, Martin-Subero JI, Rohde V, Kirsch M, Alaminos M, Fernandez AF, Ropero S, Schackert G, Esteller M (2009) A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 4:255–264

    CAS  PubMed  Google Scholar 

  • Matsumoto L, Takuma H, Tamaoka A, Kurisaki H, Date H, Tsuji S, Iwata A (2010) CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One 5:e15522

    PubMed Central  PubMed  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10:105–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    CAS  PubMed  Google Scholar 

  • Miyake K, Yang C, Minakuchi Y, Ohori K, Soutome M, Hirasawa T, Kazuki Y, Adachi N, Suzuki S, Itoh M, Goto YI, Andoh T, Kurosawa H, Oshimura M, Sasaki M, Toyoda A, Kubota T (2013) Comparison of genomic and epigenomic expression in monozygotic twins discordant for Rett syndrome. PLoS One 8:e66729

    CAS  PubMed  Google Scholar 

  • Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N (2007) Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449:351–355

    CAS  PubMed  Google Scholar 

  • Mohamed Ariff I, Mitra A, Basu A (2012) Epigenetic regulation of self-renewal and fate determination in neural stem cells. J Neurosci Res 90:529–539

    CAS  PubMed  Google Scholar 

  • Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schubeler D (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30:755–766

    CAS  PubMed  Google Scholar 

  • Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 106:7876–7881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A (2010) Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of alpha-synuclein. Neurotox Res 17:130–141

    CAS  PubMed  Google Scholar 

  • Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179

    CAS  PubMed  Google Scholar 

  • Nagarajan RP, Costello JF (2009) Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol 19:188–197

    CAS  PubMed  Google Scholar 

  • Namihira M, Kohyama J, Abematsu M, Nakashima K (2008) Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Lond B Biol Sci 363:2099–2109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, Zoghbi H, Percy A, Glaze DG (2008) Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70:1313–1321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ng RK, Gurdon JB (2008) Epigenetic inheritance of cell differentiation status. Cell Cycle 7:1173–1177

    CAS  PubMed  Google Scholar 

  • Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31:763–780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olynik BM, Rastegar M (2012) The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Front Genet 3:81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oury F, Rijli FM (2007) [Hoxa2: a key gene for the facial somatosensory map]. Med Sci (Paris) 23:247–9

    Google Scholar 

  • Pasini D, Hansen KH, Christensen J, Agger K, Cloos PA, Helin K (2008) Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev 22:1345–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poulsen P, Esteller M, Vaag A, Fraga MF (2007) The epigenetic basis of twin discordance in age-related diseases. Pediatr Res 61:38R–42R

    PubMed  Google Scholar 

  • Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    CAS  PubMed  Google Scholar 

  • Rett A (1986) Rett syndrome. History and general overview. Am J Med Genet Suppl 1:21–25

    CAS  PubMed  Google Scholar 

  • Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223–232

    CAS  PubMed  Google Scholar 

  • Robertson KD (2001) DNA methylation, methyltransferases, and cancer. Oncogene 20:3139–3155

    CAS  PubMed  Google Scholar 

  • Roth TL, Lubin FD, Sodhi M, Kleinman JE (2009) Epigenetic mechanisms in schizophrenia. Biochim Biophys Acta 1790:869–877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    CAS  PubMed  Google Scholar 

  • Samaco RC, Neul JL (2011) Complexities of Rett syndrome and MeCP2. J Neurosci 31:7951–7959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawa A, Snyder SH (2002) Schizophrenia: diverse approaches to a complex disease. Science 296:692–695

    CAS  PubMed  Google Scholar 

  • Schneider JW, Gao Z, Li S, Farooqi M, Tang TS, Bezprozvanny I, Frantz DE, Hsieh J (2008) Small-molecule activation of neuronal cell fate. Nat Chem Biol 4:408–410

    CAS  PubMed  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745

    CAS  PubMed  Google Scholar 

  • Scott CE, Wynn SL, Sesay A, Cruz C, Cheung M, Gomez Gaviro MV, Booth S, Gao B, Cheah KS, Lovell-Badge R, Briscoe J (2010) SOX9 induces and maintains neural stem cells. Nat Neurosci 13:1181–1189

    CAS  PubMed  Google Scholar 

  • Sikorska M, Sandhu JK, Deb-Rinker P, Jezierski A, Leblanc J, Charlebois C, Ribecco-Lutkiewicz M, Bani-Yaghoub M, Walker PR (2008) Epigenetic modifications of SOX2 enhancers, SRR1 and SRR2, correlate with in vitro neural differentiation. J Neurosci Res 86:1680–1693

    CAS  PubMed  Google Scholar 

  • Silva PN, Gigek CO, Leal MF, Bertolucci PH, de Labio RW, Payão SL, Smith Mde A (2008) Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer’s disease. J Alzheimers Dis 13:173–176

    CAS  PubMed  Google Scholar 

  • Soshnikova N, Duboule D (2008) Epigenetic regulation of Hox gene activation: the waltz of methyls. Bioessays 30:199–202

    CAS  PubMed  Google Scholar 

  • Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97:6763–6768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun G, Yu RT, Evans RM, Shi Y (2007) Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A 104:15282–15287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas B, Beal MF (2011) Molecular insights into Parkinson’s disease. F1000 Med Rep 3:7

    PubMed Central  PubMed  Google Scholar 

  • Tudor M, Akbarian S, Chen RZ, Jaenisch R (2002) Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci U S A 99:15536–15541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urdinguio RG, Sanchez-Mut JV, Esteller M (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8:1056–1072

    CAS  PubMed  Google Scholar 

  • Van Esch H, Bauters M, Ignatius J, Jansen M, Raynaud M, Hollanders K, Lugtenberg D, Bienvenu T, Jensen LR, Gecz J, Moraine C, Marynen P, Fryns JP, Froyen G (2005) Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet 77:442–453

    PubMed Central  PubMed  Google Scholar 

  • Verdin E, Hirschey MD, Finley LW, HAIGIS MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35:669–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    CAS  PubMed  Google Scholar 

  • Watanabe D, Uchiyama K, Hanaoka K (2006) Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development. Neuroscience 142:727–737

    CAS  PubMed  Google Scholar 

  • Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    CAS  PubMed  Google Scholar 

  • Wu Z, Huang K, Yu J, Le T, Namihira M, Liu Y, Zhang J, Xue Z, Cheng L, Fan G (2012) Dnmt3a regulates both proliferation and differentiation of mouse neural stem cells. J Neurosci Res 90:1883–1891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yazdani M, Deogracias R, Guy J, Poot RA, Bird A, Barde YA (2012) Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons. Stem Cells 30:2128–2139

    CAS  PubMed  Google Scholar 

  • Zachariah RM, Rastegar M (2012) Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research. Neural Plast 2012:415825

    PubMed Central  PubMed  Google Scholar 

  • Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, Shi Y (2010) MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A 107:1876–1881

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario F. Fraga Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Toraño, E.G., Fernandez, A.F., Urdinguio, R.G., Fraga, M.F. (2014). Role of Epigenetics in Neural Differentiation: Implications for Health and Disease. In: Maulik, N., Karagiannis, T. (eds) Molecular mechanisms and physiology of disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0706-9_2

Download citation

Publish with us

Policies and ethics