Skip to main content

Brazilian Atlantic Forest Soil Metagenome

  • Reference work entry
  • First Online:
  • 110 Accesses

The Brazilian Atlantic Forest

The Brazilian Atlantic Forest is one of the 25 biodiversity hot spots and also one of the most threatened areas in the world (Myers et al. 2000). The original Atlantic Forest covered an area of 1,315,460 km2 and spread to 17 states from the northeast to the south coast of Brazil. Nowadays, only 7.9 % of the original forest remains. It includes a dense rain forest, which comprehends the high montane, montane, submontane, coastal forests, and the mangrove; an ombrophilous mixed forest, with predominance of Araucariaceae and Lauraceae forests; and the deciduous and semi-deciduous stationary forests. The forest is divided in blocks ranging from 1,500 m above sea level in the high montane forest to the coastal forest and mangrove, creating a gradient of vegetation (Câmara 2003) (for a detailed map of the Brazilian Atlantic Forest, check http://mapas.sosma.org.br/).

According to the Brazilian Environment Ministry (MMA – http://www.mma.gov.br/biomas/mata-atlantica...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amann RI, Ludwig W, Schleifer K-L. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andreote DF, Jiménez DJ, Chaves D, et al. The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE. 2012;7(6):e38600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arpigny JL, Jaeger K-E. Bacterial lipolytic enzymes: classification and properties. Biochem J. 1999;343:177–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruce T, Martinez IB, Neto OM, et al. Bacterial community diversity in the Brazilian Atlantic Forest soils. Microb Ecol. 2010;60:840–9.

    Article  CAS  PubMed  Google Scholar 

  • Câmara IG. Brief history of conservation in the Atlantic Forest. In: Galindo-Leal C, Câmara IG, editors. The Atlantic Forest of South America: biodiversity status, threats and outlook. Washington, DC: Island Press; 2003. p. 31–42.

    Google Scholar 

  • Couto GH, Glogauer A, Faoro H. Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the South Brazilian coast. Genet Mol Res. 2010;9(1):514–23.

    Article  CAS  PubMed  Google Scholar 

  • Demain AL. From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol. 2006;33:486–95.

    Article  CAS  PubMed  Google Scholar 

  • Di Stasi LC, Oliveira GP, Carvalhaes MA, et al. Medicinal plants popularly used in the Brazilian Tropical Atlantic Forest. Fitoterapia. 2002;73(1):69–91.

    Article  PubMed  Google Scholar 

  • Etto RM, Cruz LM, Jesus EC, et al. Prokaryotic communities of acidic peatlands from the Southern Brazilian Atlantic Forest. Braz J Microbiol. 2012;43(2):661–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faoro H, Alves AC, Souza EM, et al. Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl Environ Microbiol. 2010;76(14):4744–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faoro H, Glogauer A, Souza EM, et al. Identification of a new lipase family in the Brazilian Atlantic Forest soil metagenome. Environ Microbiol Rep. 2011;3(6):750–5.

    Article  CAS  PubMed  Google Scholar 

  • Faoro H, Glogauer A, Couto GH, et al. Characterization of a new acidobacteria-derived moderately thermostable lipase from a Brazilian Atlantic Forest soil metagenome. FEMS Microbiol Ecol. 2012;81(2):386–94.

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. PNAS. 2006;103(3):626–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter-Cevera JC. The value of microbial diversity. Curr Opin Microbiol. 1998;1(3):278–85.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger K-E, Dijkstra BW, Reetz M. Bacterial biocatalysts: biology, tree-dimensional structures, and biotechnological applications. Annu Rev Microbiol. 1999;53:315–51.

    Article  CAS  PubMed  Google Scholar 

  • Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee M-H, Lee C-H, Oh T-K, et al. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol. 2006;72(11):7406–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopes FC, Calvo TR, Vilegas W, et al. Anti-inflammatory activity of Alchornea triplinervia ethyl acetate fraction: inhibition of H2O2, NO and TNF-a. Pharm Biol. 2010;48(12):1320–7.

    Article  PubMed  Google Scholar 

  • Lorenz P, Schlper C. Metagenome – a challenging source of enzyme discovery. J Mol Catal B Enzym. 2002;19(20):13–9.

    Article  Google Scholar 

  • Metzker ML. Sequencing technologies – the next generation. Nature Rev. 2010;11:31–46.

    Article  CAS  Google Scholar 

  • Myers N, Mittermeirer RA, Mittermeier CG, et al. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–8.

    Article  CAS  PubMed  Google Scholar 

  • Quintans JS, Soares BM, Ferraz RP, et al. Chemical constituents and anticancer effects of the essential oil from leaves of Xylopia laevigata. Planta Med. 2013;79(2):123–30.

    Article  CAS  Google Scholar 

  • Raes J, Korbel JO, Lercher MJ, et al. Prediction of effective genome size in metagenomic samples. Genome Biol. 2007;8(1):8R10.1–11.

    Article  Google Scholar 

  • Steele HL, Jaeger K-E, Daniel R, et al. Advances in recovery on novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol. 2009;16(1–2):25–37.

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, ØVreas L, Thingstad TF. Prokaryotic diversity – magnitude, dynamics and controlling factors. Science. 2002;296:1064–6.

    Article  CAS  PubMed  Google Scholar 

  • Ward NL, Challaconbe JF, Janssen PH, et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol. 2009;75:2046–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Oliveira Pedrosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Faoro, H., de Souza, E.M., Pedrosa, F.O. (2015). Brazilian Atlantic Forest Soil Metagenome. In: Highlander, S.K., Rodriguez-Valera, F., White, B.A. (eds) Encyclopedia of Metagenomics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7475-4_781

Download citation

Publish with us

Policies and ethics