Skip to main content

Resistance to Antibacterial Agents

  • Chapter
Book cover Antimicrobial Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 390))

Abstract

There are three major mechanisms whereby bacteria initially susceptible to an antimicrobial agent may acquire the ability to resist the effects of this agent. These include prevention of intracellular drug accumulation, alteration in the target of the drug, and production of a drug-inactivating enzyme. The relative importance of each of these mechanisms varies depending upon the organism involved, the antimicrobial agent, and the location of the target of the antimicrobial agent within the bacterial cell (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Nikaido. Bacterial resistance to antibiotics as a function of outer membrane permeability. J Antimicrob Chemother. 22 (Suppl A): 17 (1988).

    PubMed  CAS  Google Scholar 

  2. C.C. Sanders, and W. E. Sanders, Jr. 13-lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin Infect Dis. 15: 824 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. J. D. Hayes, and C. R. Wolf. Molecular mechanisms of drug resistance. Biochem J. 272: 281 (1990).

    PubMed  CAS  Google Scholar 

  4. I. Chopra. Efflux-based antibiotic resistance mechanisms: the evidence for increasing prevalence. J Antimicrob Chemother. 30: 737 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. G. A. Jacoby, and G. L. Archer. New mechanisms of bacterial resistance to antimicrobial agents. New Engl J Med. 324: 601 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. H. F. Chambers. Methicillin-resistant staphylococci. Clin Microbiol Rev. 1: 173 (1988).

    PubMed  CAS  Google Scholar 

  7. N. H. Georgopapadakou. Penicillin-binding proteins and bacterial resistance to (3lactams. Antimicrob. Agents Chemother. 37: 2045 (1993).

    Article  Google Scholar 

  8. D. M. Shlaes, A. Bouvet, C. Devine, J. H. Shlaes, S. al-Obeid,and R. Williamson. Inducible, transferable resistance to vancomycin in Enterococcus faecalis A256. Antimicrob Agents Chemother. 33: 198 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. J. S. Wolfson, and D. C. Hooper. Fluoroquinolone antimicrobial agents. Clin Microbiol Rev. 2: 378 (1989).

    PubMed  CAS  Google Scholar 

  10. K. Bush. Characterization of ß-lactamases. Antimicrob Agents Chemother. 33: 259 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. J. E. Davies. Aminoglycoside-aminocyclitol antibiotics and their modifying enzymes, in “Antibiotics in Laboratory Medicine, 2nd ed.,” V. Lorian, ed., Williams Wilkins, Baltimore (1986)

    Google Scholar 

  12. B. E. Murray. The life and times of the enterococcus. Clin Microbiol Rev. 3: 46 (1990).

    PubMed  CAS  Google Scholar 

  13. C. C. Sanders. ß-lactamases of gram-negative bacteria: new challenges for new drugs. Clin Infect Dis. 14: 1089 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. C. C. Sanders. Chromosomal cephalosporinases responsible for multiple resistance to newer ß-lactam antibiotics. Annu Rev Microbiol. 41: 573 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. G. A. Jacoby, and A. A. Medeiros. More extended-spectrum ß-lactamases. Antimicrob Agents Chemother. 35: 1697 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. C. J. Thomson, and S.G.B. Amyes. Selection of variants of the TEM-1 ß-lactamase, encoded by a plasmid of clinical origin, with increased resistance to ß-lactamase inhibitors. J Antimicrob Chemother. 31: 655 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanders, C.C., Sanders, W.E. (1995). Resistance to Antibacterial Agents. In: Jungkind, D.L., Mortensen, J.E., Fraimow, H.S., Calandra, G.B. (eds) Antimicrobial Resistance. Advances in Experimental Medicine and Biology, vol 390. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9203-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9203-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9205-8

  • Online ISBN: 978-1-4757-9203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics