Skip to main content

The Luminescence of the Aromatic Amino Acids

  • Chapter
Book cover Excited States of Proteins and Nucleic Acids

Abstract

The fluorescence and phosphorescence of natural proteins arise from emission by the fluorogenic ring moieties of the aromatic amino acids. Such macromolecular luminescence may be visualized as corresponding to the intrinsic luminescence representing the summed contribution of the amino acid fluorogens, as perturbed by incorporation into a Polypeptide and by the influence of the secondary and tertiary structure of the protein. Accordingly, an understanding of the luminescence properties of tryptophan, tyrosine, and Phenylalanine is basic to an interpretation of the fluorescence and phosphorescence of the proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Bowman, P. A. Caulfield, and S. Udenfriend, Spectrophotofluorometric assay in the visible and ultraviolet, Science 122, 32–33 (1955).

    Article  ADS  Google Scholar 

  2. D. E. Duggan and S. Udenfriend, The spectrophotofluorometric determination of tryptophan in plasma and of tryptophan and tyrosine in protein hydrolysates, J. Biol. Chem. 223, 313–319 (1956).

    Google Scholar 

  3. D. E. Duggan, R. L. Bowman, B. B. Brodie, and S. Udenfriend, A spectrophoto-fluorometric study of compounds of biological interest, Arch. Biochem. Biophys. 68, 1–14 (1957).

    Article  Google Scholar 

  4. H. Sprince, G. R. Rowley, and D. Jameson, Spectrophotofluorometric studies of 5-hydroxyindoles and related compounds, Science 125, 442–443 (1957).

    Article  ADS  Google Scholar 

  5. V. G. Shore and A. B. Pardee, Fluorescence of some proteins, nucleic acids, and related compounds, Arch. Biochem. Biophys. 60, 100–107 (1956).

    Article  Google Scholar 

  6. F. W. J. Teale and G. Weber, Ultraviolet fluorescence of the aromatic amino acids, Biochem. J. 65, 476–482 (1957).

    Google Scholar 

  7. P. Debye and J. O. Edwards, A note on the phosphorescence of proteins, Science 116, 143–144 (1952).

    Article  ADS  Google Scholar 

  8. R. H. Steele and A. Szent-Gyorgyi, On excitation of biological substances, Proc. Nat. Acad. Sci. 43, 477–491 (1957).

    Article  ADS  Google Scholar 

  9. H. M. Hershenson, “Ultraviolet and Visible Absorption Spectra. Index for 1930–1954,” Academic Press, New York (1956).

    Google Scholar 

  10. H. M. Hershenson, “Ultraviolet and Visible Absorption Spectra. Index for 1955–1959,” Academic Press, New York (1961).

    Google Scholar 

  11. D. B. Wetlaufer, Ultraviolet spectra of proteins and amino acids, Advan. Protein. Chem. 17, 303–390 (1962).

    Article  Google Scholar 

  12. G. H. Beaven and E. R. Holiday, Ultraviolet absorption spectra of proteins and amino acids, Advan. Protein. Chem. 7, 319–386 (1952).

    Article  Google Scholar 

  13. C. S. Hicks, The relationship of thyroxin to tryptophan, J. Chem. Soc. 127, 771–776 (1925).

    Article  Google Scholar 

  14. F. C. Smith, The ultra-violet absorption spectra of certain aromatic amino-acids, and of the serum proteins, Proc. Roy. Soc. (London) B104, 198–205 (1929).

    ADS  Google Scholar 

  15. C. B. Coulter, F. M. Stone, and E. A. Kabat, The structure of the ultraviolet absorption spectra of certain proteins and amino acids, J. Gen. Physiol. 19, 739–752 (1936).

    Article  Google Scholar 

  16. G. L. Brown and J. T. Randall, Low-temperature ultra-violet absorption spectra of biologically important compounds, Nature 163, 209–210 (1949).

    Article  ADS  Google Scholar 

  17. B. G. Edwards, Ultraviolet spectra of some indole derivatives, including tryptophan and gramicidin, Arch. Biochem. 21, 103–108 (1949).

    Google Scholar 

  18. H. Grinspan, J. Birnbaum, and J. Feitelson, Environmental effects on the ultraviolet absorption spectrum of tyrosine, Biochim. Biophys. Acta 126, 13–18 (1966).

    Article  Google Scholar 

  19. T. W. Campbell, S. Linden, S. Godshalk, and W. G. Young, The absorption spectra of some benzene derivatives with unsaturated side chains, J. Am. Chem. Soc. 69, 880–883 (1947).

    Article  Google Scholar 

  20. L. Doub and J. M. Vendenbelt, The ultraviolet absorption spectra of simple unsaturated compounds. I. Mono-and p-disubstituted benzene derivatives, J. Am. Chem. Soc. 69, 2714–2723 (1947).

    Article  Google Scholar 

  21. H. Sponer, G. Nordheim, A. L. Sklar, and E. Teller, Analysis of the near ultraviolet electronic transition of benzene, J. Chem. Phys. 7, 207–220 (1939).

    Article  ADS  Google Scholar 

  22. A. L. Sklar, The near ultraviolet absorption of substituted benzenes, J. Chem. Phys. 7, 984–993 (1939).

    Article  ADS  Google Scholar 

  23. J. R. Platt and H. B. Klevens, Absolute absorption intensities of alkylbenzenes in the 2250-1700 A. region, Chem. Rev. 41, 301–310 (1947).

    Article  Google Scholar 

  24. A. L. Sklar, Theory of color of organic compounds, J. Chem. Phys. 5, 669–681 (1937).

    Article  ADS  Google Scholar 

  25. G. N. Lewis and M. Kasha, Phosphorescence in fluid media and the reverse process of singlet-triplet absorption, J. Am. Chem. Soc. 67, 994–1003 (1945).

    Article  Google Scholar 

  26. A. C. Pitts, Near ultraviolet absorption spectrum of liquid benzene from 2795 to 3560 A, J. Chem. Phys. 18, 1416–1417 (1950).

    Article  ADS  Google Scholar 

  27. L. Pauling, “The Nature of the Chemical Bond,” Cornell University Press, Ithaca, New York (1960).

    Google Scholar 

  28. G. Weber, Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan, and related compounds, Biochem. J. 75, 335–345 (1960).

    Google Scholar 

  29. B. L. Van Duuren, Solvent effects in the fluorescence of indole and substituted indoles, J. Org. Chem. 26, 2954–2960 (1961).

    Article  Google Scholar 

  30. J. C. D. Brand and A. I. Scott, in “Techniques of Organic Chemistry” (A. Weiss-berger, ed.), Vol. XI, Part I (D. W. Bentley, ed.), p. 98, Interscience, New York (1963).

    Google Scholar 

  31. E. Yeargers, A. self-consistent-field study of tryptophan, Biophys. J. 8, 1505–1510 (1968).

    Article  ADS  Google Scholar 

  32. K. Rosenheck and P. Doty, The far ultraviolet absorption spectra of Polypeptides and protein solutions and their dependence on conformation, Proc. Nat. Acad. Sci. 47, 1775–1785 (1961).

    Article  ADS  Google Scholar 

  33. R. B. Setlow and W. R. Guild, The spectrum of the peptide bond and other substances below 230 mμ, Arch. Biochem. Biophys. 34, 223–225 (1951).

    Article  Google Scholar 

  34. A. D. McLaren, Photochemistry of enzymes, proteins, and viruses, Adv. Enzymol. 9, 75–170 (1949).

    Google Scholar 

  35. K. Sommermeyer, V. Birkwald, and H. Pruetz, X-ray excitation of fluorescence of dilute aqueous solutions of aromatic compounds, Naturwissenschaften 48, 666–667 (1961).

    Article  ADS  Google Scholar 

  36. L. Augenstein, E. Yeargers, J. Carter, and D. Nelson, Excitation, dissipative, and emissive mechanisms in biochemicals, Radiation Res. Suppl. 7, 128–138 (1967).

    Article  Google Scholar 

  37. H. B. Steen, Excitation of tryptophan in solution during irradiation with x-rays and UV light between 77°K and 300°K, Radiation Res. 41, 268–287 (1970).

    Article  Google Scholar 

  38. D. R. Nelson, J. G. Carter, R. D. Birkhoff, R. N. Hamm, and L. G. Augenstein, Yield of luminescence from X-irradiated biochemicals, Radiation Res. 32, 723–743 (1967).

    Article  Google Scholar 

  39. J. G. Carter, D. R. Nelson, and L. G. Augenstein, Effects of temperature on X-ray-induced light emission from powders of amino acids and trypsin, Arch. Biochem. Biophys. 111, 270–282 (1965).

    Article  Google Scholar 

  40. J. A. Gally and G. M. Edelman, The effect of temperature on the fluorescence of some aromatic amino acids and proteins, Biochim. Biophys. Acta 60, 499–509 (1962).

    Article  Google Scholar 

  41. J. A. Gaily and G. M. Edelman, Effects of conformation and environment on the fluorescence of proteins and Polypeptides, Biopolymers Symp. 1, 367–381 (1964).

    Google Scholar 

  42. F. Bishai, E. Kuntz, and L. Augenstein, Intra-and intermolecular factors affecting the excited states of aromatic amino acids, Biochim. Biophys. Acta 140, 381–394 (1967).

    Google Scholar 

  43. J. Nag-Chaudhuri and L. Augenstein, Effect of the physical environment on excited states of amino acids and proteins, Biopolymers Symp. 1, 441–452 (1964).

    Google Scholar 

  44. E. Yeargers and L. Augenstein, UV spectral properties of Phenylalanine powder, Biophys. J. 5, 687–696 (1965).

    Article  Google Scholar 

  45. S. V. Konev, M. Y. Kostko, L. G. Pikulik, and I. D. Volotovskii, Possible sources of different activity of the excited state of fluorescence of protein solutions, Dokl. Akad. Nauk Belorussk. SSR 10, 500–502 (1966).

    Google Scholar 

  46. E. Kuntz, Tryptophan emission from trypsin and polymer films, Nature 217, 845–846 (1968).

    Article  ADS  Google Scholar 

  47. E. Lippert, Spektroskopische Bestimmung des Dipolmoments aromatischer Verbindungen in ersten angeregten Singuletzustand, Z. Elektrochem. 61, 962–975 (1957).

    Google Scholar 

  48. R. W. Cowgill, Fluorescence and protein structure. X. Reappraisal of solvent and structural effects, Biochim. Biophys. Acta 133, 6–18 (1967).

    Google Scholar 

  49. M. S. Walker, T. W. Bednar, and R. Lumry, Exciplex studies. II. Indole and indole derivatives, J. Chem. Phys. 47, 1020–1028 (1967).

    Article  ADS  Google Scholar 

  50. L. F. Gladchenko and L. G. Pikulik, Determination of dipole moments of indole and tryptophan in excited states, Zh. Prikl. Spektrosk. 6, 355–360 (1967).

    Google Scholar 

  51. N. Mataga, Y. Torihashi, and K. Ezumi, Electronic structures of carbazole and indole and the solvent effects on the electronic spectra, Theoret. Chim. Acta (Berlin) 2, 158–167 (1964).

    Article  Google Scholar 

  52. B. L. Van Duuren, Effects of the environment on the fluorescence of aromatic compounds in solution, Chem. Rev. 63, 325–354 (1963).

    Article  Google Scholar 

  53. M. S. Walker, T. W. Bednar, and R. Lumry, Exciplex formation in the excited state of indole, J. Chem. Phys. 45, 3455–3456 (1966).

    Article  ADS  Google Scholar 

  54. V. P. Bobrovich, G. S. Kembrovskii, and N. I. Marenko, Indole luminescence peculiarities, Dokl. Akad. Nauk Belorussk. SSR 10, 936–940 (1966).

    Google Scholar 

  55. M. S. Walker, T. W. Bednar, and R. Lumry, Exciplex studies. III. Radiative and non-radiative relaxation of the fluorescence state of indole and methyl derivatives of indole, in “Molecular Luminescence” (E. C. Lim, ed.), p. 135, W. A. Benjamin, Inc., New York (1969).

    Google Scholar 

  56. W. E. Kurtin and P. S. Song, A spectroscopic study of the polarized luminescence of indoles, J. Am. Chem. Soc. 91, 4892–4906 (1969).

    Article  Google Scholar 

  57. H. U. Schuett and H. Zimmerman, Polarization of electron bonds of aromatic compounds. VII. Indole, indazole, benzimidazole, benztriazole, and carbazole, Bev. Bunsenges. Physik. Chem. 67, 54–62 (1963).

    Google Scholar 

  58. G. S. Kembrovskii, V. P. Bobrovich, and S. V. Konev, Low-temperature luminescence spectra of indole, Zh. Prikl. Spektrosk. 5, 695–698 (1966).

    Google Scholar 

  59. J. W. Bridges and R. T. Williams, The fluorescence of indoles and aniline derivatives, Biochem. J. 107, 225–237 (1968).

    Google Scholar 

  60. G. M. Barenboim, Interaction of excited biomolecules with oxygen. I. Quenching of photoluminescence of biomolecules by oxygen and nitric oxide, Biofizika 8, 154–164 (1963).

    Google Scholar 

  61. G. M. Barenboim and A. N. Domanskii, Interaction of excited biomolecules with oxygen. II. Extinguishing of tryptophan and tyrosine X-ray fluorescence with oxygen and nitric oxide, Biofizika 8, 321–330 (1963).

    Google Scholar 

  62. J. Feitelson, On the mechanism of fluorescence quenching. Tyrosine and similar compounds, J. Phys. Chem. 68, 391–397 (1964).

    Article  Google Scholar 

  63. W. M. Vaughan and G. Weber, Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment, Biochemistry 9, 464–473 (1970).

    Article  Google Scholar 

  64. I. Weinryb, The effect of solvent viscosity on the fluorescence of tryptophan derivatives, Biochem. Biophys. Res. Commun. 34, 865–868 (1969).

    Article  Google Scholar 

  65. G. Weber and K. Rosenheck, Proton-transfer effects in the’ quenching of fluorescence of tyrosine copolymers, Biopolymers Symp. 1, 333–341 (1964).

    Google Scholar 

  66. P. Cuatrecasas, H. Edelhoch, and C. B. Anfinsen, Fluorescence studies of the interaction of nucleotides with the active site of the nuclease of Staphylococcus aureus, Proc. Nat. Acad. Sci. 58, 2043–2050 (1967).

    Article  ADS  Google Scholar 

  67. J. Feitelson, Environmental effects on the fluorescence of tyrosine and its homologues, Photochem. Photobiol. 9, 401–410 (1969).

    Article  Google Scholar 

  68. J. W. Longworth, Conformation and interactions of excited states. II. Polystyrene, Polypeptides, and proteins, Biopolymers 4, 1131–1148 (1966).

    Article  Google Scholar 

  69. A. White, Effect of pH on fluorescence of tyrosine, tryptophan, and related compounds, Biochem. J. 71, 217–220 (1959).

    Google Scholar 

  70. G. Weber and F. W. J. Teale, Determination of the absolute quantum yield of fluorescence solutions, Trans. Faraday Soc. 53, 646–655 (1957).

    Article  Google Scholar 

  71. R. F. Chen, Fluorescence quantum yields of tryptophan and tyrosine, Anal. Lett. 1, 35–42 (1967).

    Article  Google Scholar 

  72. R. F. Chen, Some characteristics of the fluorescence of quinine, Anal. Biochem. 19, 374–387 (1967).

    Article  Google Scholar 

  73. W. R. Dawson and M. W. Windsor, Fluorescence yields of aromatic compounds, J. Phys. Chem. 72, 3251–3260 (1968).

    Article  Google Scholar 

  74. J. E. Gill, The fluorescence excitation spectrum of quinine bisulfate, Photochem. Photobiol. 9, 313–322 (1969).

    Article  Google Scholar 

  75. A. N. Fletcher, Quinine sulfate as a fluorescence quantum yield standard, Photochem. Photobiol. 9, 439–444 (1969).

    Article  Google Scholar 

  76. A. Weisstuch and A. C. Testa, A fluorescence study of aminopyridines, J. Phys. Chem. 72, 1982–1987 (1968).

    Article  Google Scholar 

  77. R. F. Chen, G. G. Vurek, and N. Alexander, Fluorescence decay times: Proteins, coenzymes, and other compounds in water, Science 156, 949–951 (1967).

    Article  ADS  Google Scholar 

  78. L. F. Gladchenko, M. Y. Kostko, L. G. Pikulik, and A. N. Sevchenko, Duration of the excited state of ultraviolet fluorescence of aromatic amino acids, Dokl. Akad. Nauk Belorussk. SSR 9, 647–650 (1965).

    Google Scholar 

  79. I. Weinryb and R. F. Steiner, The luminescence of tryptophan and Phenylalanine derivatives, Biochemistry 7, 2488–2495 (1968).

    Article  Google Scholar 

  80. R. W. Cowgill, Fluorescence and the structure of proteins. I. Effects of substituents on the fluorescence of indole and phenol compounds, Arch. Biochem. Biophys. 100, 36–44 (1963).

    Article  Google Scholar 

  81. R. W. Cowgill, Fluorescence and the structure of proteins. II. Fluorescence of Peptides containing tryptophan or tyrosine, Biochim. Biophys. Acta 75, 272–273 (1963).

    Article  Google Scholar 

  82. H. Edelhoch, R. S. Bernstein, and M. Wilchek, The fluorescence of tyrosyl and tryptophanyl diketopiperazines, J. Biol. Chem. 243, 5985–5992 (1968).

    Google Scholar 

  83. H. Edelhoch, L. Brand, and M. Wilchek, Fluorescence studies with tryptophyl Peptides, Biochemistry 6, 547–559 (1967).

    Article  Google Scholar 

  84. M. Shinitsky and R. Goldman, Fluorometric detection of histidine-tryptophan complexes in peptides and proteins, Europ. J. Biochem. 3, 139–144 (1967).

    Article  Google Scholar 

  85. H. Edelhoch, R. L. Perlman, and M. Wilchek, Fluorescence studies with tyrosyl peptides, Biochemistry 7, 3893–3900 (1968).

    Article  Google Scholar 

  86. E. C. Russell and R. W. Cowgill, Fluorescence and protein structure. XIII. Further effects of side-chain groups, Biochim. Biophys. Acta 154, 231–233 (1968).

    Google Scholar 

  87. R. W. Cowgill, Fluorescence and protein structure. XVII. On the mechanism of peptide quenching, Biochim. Biophys. Acta 200, 18–25 (1970).

    Google Scholar 

  88. R. W. Cowgill, Fluorescence and protein structure. IV. Iodinated tyrosyl residues, Biochim. Biophys. Acta 94, 74–80 (1965).

    Article  Google Scholar 

  89. R. W. Cowgill, Fluorescence and protein structure. XI. Fluorescence quenching by disulfide and sulfhydryl groups, Biochim. Biophys. Acta 100, 37–44 (1967).

    Google Scholar 

  90. J. Eisinger and G. Navon, Fluorescence quenching and isotope effects of tryptophan, J. Chem. Phys. 50, 2069–2077 (1969).

    Article  ADS  Google Scholar 

  91. R. F. Steiner and E. Kirby, The interaction of the ground and excited states of indole derivatives with electron scavengers, J. Phys. Chem. 73, 4130–4135 (1969).

    Article  Google Scholar 

  92. R. F. Steiner and E. Kirby, The influence of solvent and temperature upon the fluorescence of indole derivatives, J. Phys. Chem. 74, 4480–4490 (1970).

    Article  Google Scholar 

  93. L. I. Grossweiner and H.-I. Joschek, Optical generation of hydrated electrons from aromatic compounds, Advan. Chem. Ser. 50, 279–288 (1965).

    Article  Google Scholar 

  94. H.-I. Joschek and L. I. Grossweiner, Optical generation of hydrated electrons from aromatic compounds. II, J. Am. Chem. Soc. 88, 3261–3268 (1966).

    Article  Google Scholar 

  95. T. R. Hopkins and R. Lumry, Energy transfer in proteins: Ejection of electrons from indole exciplexes, Biophys. J. 9, A–216 (1969).

    Google Scholar 

  96. M. Anbar, Reactions of the hydrated electron, Advan. Chem. Ser. 50, 55–81 (1965).

    Article  Google Scholar 

  97. R. Braams, Rate constants of hydrated electron reactions with amino acids, Radiation Res. 27, 319–329 (1966).

    Article  Google Scholar 

  98. G. Weber, in “Light and Life” (W. M. McElroy and B. Glass, eds.), pp. 82–105, The Johns Hopkins Press, Baltimore (1961).

    Google Scholar 

  99. R. C. Armstrong, A third dissociation constant for tryptophan, Biochim. Biophys. Acta 158, 174–175 (1968).

    Article  Google Scholar 

  100. P.-S. Song and W. E. Kurtin, The charge distribution in the excited states of some indoles, Photochem. Photobiol. 9, 175–178 (1969).

    Article  Google Scholar 

  101. H. V. Drushel, A. L. Sommers, and R. C. Cox, Correction of luminescence spectra and calculation of quantum efficiencies using computer techniques, Anal. Chem. 35, 2166–2172 (1963).

    Article  Google Scholar 

  102. W. E. Blumberg, J. Eisinger, and G. Navon, The lifetimes of excited states of some biological molecules, Biophys. J. 8, A–106 (1968).

    Google Scholar 

  103. H. C. Borreson and C. A. Parker, Some precautions required in the calibration of fluorescence spectrometers in the ultraviolet region, Anal. Chem. 38, 1073–1074 (1966).

    Article  Google Scholar 

  104. H. C. Borresen, The fluorescence of guanine and guanosine, Acta Chem. Scand. 21, 920–936 (1967).

    Article  Google Scholar 

  105. H. Ley and K. V. Englehardt, Ultraviolet fluorescence and chemical constitution of cyclic compounds, Z. Physik. Chem. 74, 1–64 (1910).

    Google Scholar 

  106. R. A. Badley and R. W. J. Teale, Resonance energy transfer in pepsin conjugates, J. Mol. Biol. 44, 71–88 (1969).

    Article  Google Scholar 

  107. I. B. Berlman, “Handbook of Fluorescence Spectra of Aromatic Molecules,” Academic Press, New York (1965).

    Google Scholar 

  108. J. Koudelka and L. Augenstein, The importance of the microenvironment surrounding a chromophore in determining its spectroscopic behavior, Photochem. Photobiol. 7, 613–617 (1968).

    Article  Google Scholar 

  109. Z. P. Gribova, cited in “The Fluorescence and Phosphorescence of Proteins and Nucleic Acids” (S. V. Konev, ed.), Plenum Press, New York (1967).

    Google Scholar 

  110. L. I. Grossweiner and W. A. Mulac, Primary processes in the flash photolysis of ovalbumin and constituents, Radiation Res. 10, 515–521 (1959).

    Article  Google Scholar 

  111. S. L. Aksentsev, Y. A. Vladimirov, V. I. Olenev, and Y. Y. Fesenko, Impulse photolysis study of primary photoproducts of aromatic amino acids at 80°K, Biofizika 12, 63–68 (1967).

    Google Scholar 

  112. G. M. Barenboim, Short-lived phosphorescence of dl-tryptophan in solutions, Biofizika 7, 227–232 (1962).

    Google Scholar 

  113. J. W. Longworth, Tyrosine phosphorescence of proteins, Biochem. J. 81, 23p–24p (1961).

    Google Scholar 

  114. J. W. Longworth, Excited state interactions in macromolecules, Photochem. Photobiol. 7, 587–596 (1968).

    Article  Google Scholar 

  115. G. Weber, Polarization of the fluorescence of solutions, in “Fluorescence and Phosphorescence Analysis” (D. M. Hercules, ed.), pp. 217–239, Interscience, New York (1966).

    Google Scholar 

  116. F. Perrin, Polarization of light in fluorescence, average life of molecules in the excited state, J. Phys. Radium 7, 390–401 (1926).

    Article  Google Scholar 

  117. A. Jablonski, Theory of the polarization of photoluminescence of colored solutions, Z. Physik. 96, 236–246 (1935).

    Article  ADS  Google Scholar 

  118. J. Lynn and G. D. Fasman, Conformational dependence of fluorescence polarization spectra of l-tryptophan-containing copolypeptides, Biopolymers 6, 159–163 (1968).

    Article  Google Scholar 

  119. R. H. McKay, Effect of various environments on the intrinsic fluorescence polarization spectra of horse liver alchol dehydrogenase, Arch. Biochem. Biophys. 135, 218–230 (1969).

    Article  Google Scholar 

  120. T. Forster, “Fluoreszens organisches Verbindungen,” Vandenhoeck and Ruprecht, Gottingen (1951).

    Google Scholar 

  121. T. Forster, Transfer mechanisms of electronic excitation, Dis. Faraday Soc. 27, 7–17 (1959).

    Article  Google Scholar 

  122. J. W. Longworth, J. J. Ten Bosch, J. A. Knopp, and R. O. Rahn, Electronic energy transfer in oligomers and polymers of l-tyrosine, in “Molecular Luminescence” (E. C. Lim, ed.), p. 529, W. A. Benjamin, Inc., New York (1969).

    Google Scholar 

  123. J. A. Knopp and J. W. Longworth, Energy transfer in oligotyrosyl compounds: Fluorescence quenching as a function of the ionization of the phenolic hydroxyl groups, Biochim. Biophys. Acta 154, 436–443 (1968).

    Google Scholar 

  124. R. F. Steiner, The phosphorescence of tyrosine Oligopeptides, Biochem. Biophys. Res. Commun. 30, 502–507 (1968).

    Article  Google Scholar 

  125. R. F. Steiner and R. Kolinski, The phosphorescence of Oligopeptides containing tryptophan and tyrosine, Biochemistry 7, 1014–1018 (1968).

    Article  Google Scholar 

  126. T. Cassen and D. Kearns, Investigation of energy transfer in peptides by excitation difference spectra techniques, Biochem. Biophys. Res. Commun. 31, 851–855 (1968).

    Article  Google Scholar 

  127. C. Hélène, M. Ptak, and R. Santus, Optical and magnetic study of the excited states in the polynucleotides and Polypeptides, J. Chim. Phys. 65, 160–166 (1968).

    Google Scholar 

  128. J. E. Gill and M. Weissbluth, Thermoluminescence of amino acids and proteins irradiated with ultraviolet light, Biopolymers Symp. 1, 433–439 (1964).

    Google Scholar 

  129. S. Prydz and T. Rogeberg, Spectral study of thermoluminescence from aromatic amino acids, Phys. Norvegica 1, 227–233 (1963).

    Google Scholar 

  130. M. Guermonprez, R. Santus, and M. Ptak, Delayed luminescence of aromatic amino acids in boric acid, Comp. Rend. 261 (Group 6), 387–390 (1965).

    Google Scholar 

  131. D. I. Roshchupkin, Effect of gases on the thermoluminescence and prolonged afterglow of frozen proteins and aromatic amino acids irradiated by ultraviolet light, Biofizika 11, 167–168 (1966).

    Google Scholar 

  132. A. K. Kukushkin and A. N. Kuznetsov, Possible physical mechanisms of the thermal luminescence of some aromatic amino acids and proteins, Biofizika 11, 223–227 (1966).

    Google Scholar 

  133. E. E. Fesenko, E. A. Burshtein, and Y. A. Vladimirov, Biphotonic ionization of aromatic acids in alkaline medium at 80°K, Biofizika 12, 616–623 (1967).

    Google Scholar 

  134. R. W. Ricci, Deuterium-isotope effect on the fluorescence yields and lifetimes of indole derivatives—including tryptophan and tryptamine, Photochem. Photobiol. 12, 67–75 (1970).

    Article  Google Scholar 

  135. S. S. Lehrer, Deuterium-isotope effects on the fluorescence of tryptophan in peptides and in lysozyme, J. Am. Chem. Soc. 92, 3459–3462 (1970).

    Article  Google Scholar 

  136. J. Feitelson, Environmental effects on the fluorescence of tryptophan and other indole derivatives, Israel J. Chem. 8, 241–252 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Weinryb, I., Steiner, R.F. (1971). The Luminescence of the Aromatic Amino Acids. In: Steiner, R.F., Weinryb, I. (eds) Excited States of Proteins and Nucleic Acids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1878-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1878-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1880-4

  • Online ISBN: 978-1-4684-1878-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics