Skip to main content

Peroxynitrite Reacts with Methemoglobin to Generate Globin-Bound Free Radical Species

Implications for Vascular Injury

  • Chapter
Book cover Oxygen Transport to Tissue XX

Abstract

Reactive oxygen species been implicated in oxidative stress and vascular injury. These include the free radicals Superoxide (O2⋅)’ hydroxyl (OH⋅), peroxyl (LO2⋅) and alkoxyl (LO⋅) and the non-radicals hydrogen peroxide (H2O2), lipid peroxides and singlet oxygen. It was originally thought that the hydroxyl radical (OH⋅) was likely to be the most damaging species (1); however, this free radical is so reactive that it has a diffusion distance of no more than a few nm at most (2). The hydroxyl radical’s non-specific reactivity also makes it less likely that it will react with a vital cellular component. Other less reactive free radicals may be more toxic in that they can mediate damage at some distance from where they are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halliwell B, Gutteridge JMC. Oxygen free-radicals and iron in relation to biology and medicine—some problems and concepts. Arch. Biochem. Biophys. 1986; 246:501–514.

    Article  CAS  PubMed  Google Scholar 

  2. Hutchinson F. The distance that a radical formed by ionizing radiation can diffuse in a yeast cell. Radiat. Res. 1957; 7:473–483.

    Article  CAS  PubMed  Google Scholar 

  3. Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett. 1995; 369:131–135.

    Article  CAS  PubMed  Google Scholar 

  4. Beckman JS. The physiological and pathological chemistry of nitric oxide. In: Lancaster J jr., ed. Nitric oxide: principals and actions. San Diego: Academic Press, 1996:1–82.

    Chapter  Google Scholar 

  5. Beckman JS, Ye YZ, Anderson PG, et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol. Chem. Hoppe. Seylers 1994; 375:81–88.

    Article  Google Scholar 

  6. Kooy NW, Royall JA, Ye YZ, Kelly DR, Beckman JS. Evidence for in vivo peroxynitrite production in human acute lung injury. Amer. J. Resp. Crit. Care Med. 1995; 151:1250–1254.

    CAS  Google Scholar 

  7. Hantraye P, Brouillet E, Ferrante R, et al. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nature Medicine 1996; 2:1017–1021.

    Article  CAS  PubMed  Google Scholar 

  8. Turrens JF, Boveris A. Generation of Superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 1980; 191:421–427.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal cytochrome oxidase respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994; 356:295–298.

    Article  CAS  PubMed  Google Scholar 

  10. Cooper CE. Ferryl iron and protein free radicals. In: Rice-Evans CA, Burdon RH, eds. Free Radical Damage and its Control. Amsterdam: Elsevier, 1994:65–109.

    Google Scholar 

  11. Gibson JF, Ingram DJE. Location of free electrons in porphin ring complexes. Nature 1956; 178:871–872.

    Article  CAS  Google Scholar 

  12. Newman ESR, Rice-Evans CA, Davies MJ. Identification of initiating agents in myoglobin-induced lipid peroxidation. Biochem. Biophys. Res. Comm. 1991; 179:1414–1419.

    Article  CAS  PubMed  Google Scholar 

  13. Kanner J, Harrel S. Initiation of membrane lipid peroxidation by activated metmyoglobin and methaemoglobin. Arch. Biochem. Biophys. 1975; 237:314–321.

    Article  Google Scholar 

  14. Giulivi C, Hochstein P, Davies KJA. Hydrogen peroxide production by red blood cells. Free Radical Biol. Med. 1994; 16:123–129.

    Article  CAS  Google Scholar 

  15. Svistunenko DA, Patel RP, Voloshchenko SV, Wilson MT. The globin-based free radical of ferryl hemoglobin is detected in normal human blood. J. Biol. Chem. 1997; 272:7114–7121.

    Article  CAS  PubMed  Google Scholar 

  16. Patel RP, Svistunenko DA, Darley-Usmar VM, Symons MCR, Wilson MT. Redox cycling of human metHb by H2O2 yields persistent ferryl ion and protein based radicals: effect of catalase. Free Radical Res. 1996; 25:117–123.

    Article  CAS  Google Scholar 

  17. Uppu RM, Pryor WA. Biphasic synthesis of high concentrations of peroxynitrite using water-insoluble alkyl nitrite and hydrogen peroxide. Met. Enzymol. 1996; 269:322–329.

    Article  CAS  Google Scholar 

  18. Gorbunov NV, Osipov AN, Day BW, Zayas-Rivera B, Kagan VE, Elsayed NM. Reduction of Ferrylmyoglobin and Ferrylhemoglobin by Nitric Oxide: A Protective Mechanism against Ferryl Hemoprotein-Induced Oxidations. Biochemistry 1995; 34:6689–6699.

    Article  CAS  PubMed  Google Scholar 

  19. Patel RP. Measurement of haemoglobin or copper ion promoted lipid peroxidation: implications for the oxidative modification of low density lipoprotein [PhD]: University of Essex, UK, 1996.

    Google Scholar 

  20. Svistunenko DA, Patel RP, Wilson MT. An EPR investigation of human methaemoglobin oxidation by hydrogen peroxide: methods to quantify all paramagnetic’ species observed in the reaction. Free Rad. Res. 1996; 24:269–280.

    Article  CAS  Google Scholar 

  21. Nicholls P. The formation and properties of sulphmyoglobin and sulphcatalase. Biochem. J. 1961; 81:374–383.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Davies MJ. Detection of Metmyoglobin-Derived Radicals on Reaction of Metmyoglobin with Hydrogen Peroxide and Other Peroxidic Compounds. Free Rad. Res. Commun. 1990; 10:361–370.

    Article  CAS  Google Scholar 

  23. Petersen RL, Symons MCR, Taiwo FA. Application of Radiation and Electron Spin Resonance Spectroscopy to the Study of Ferryl Myoglobin. J. Chem. Soc. Faraday. Trans. 1 1989; 85:2435–2443.

    Article  Google Scholar 

  24. Tew D, deMontellano PO. The Myoglobin Protein Radical. Coupling of Tyr-103 to Tyr-151 in the H2O2-mediated cross-linking of sperm whale myoglobin. J. Biol. Chem. 1988; 263:17880–17886.

    CAS  PubMed  Google Scholar 

  25. Gibson JF, Ingram DJE, Nicholls P. Free Radical produced in the Reaction of Metmyoglobin with Hydrogen Peroxide. Nature 1958; 181:1398–1399.

    Article  CAS  PubMed  Google Scholar 

  26. DeGray JA, Gunther MR, TschirretGuth R, de Montellano PRO, Mason RP. Peroxidation of a specific tryptophan of metmyoglobin by hydrogen peroxide. J. Biol. Chem. 1997; 272(4):2359–2362.

    Article  CAS  PubMed  Google Scholar 

  27. Svistunenko DA, Davies NA, Wilson MT, Stidwill RP, Singer M, Cooper CE. Free radical in blood: a measure of haemoglobin autoxidation in vivo? J. Chem. Soc. Perkin Trans. II 1997;In press.

    Google Scholar 

  28. Tan WKM, Williams CE, During MJ, et al. Accumulation of cytotoxins during the development of seizures and edema after hypoxic-ischemic injury In late-gestation fetal sheep. Pediatr. Res. 1996; 39(5):791–797.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cooper, C.E., Torres, J., Sharpe, M.A., Wilson, M.T., Svistunenko, D.A. (1998). Peroxynitrite Reacts with Methemoglobin to Generate Globin-Bound Free Radical Species. In: Hudetz, A.G., Bruley, D.F. (eds) Oxygen Transport to Tissue XX. Advances in Experimental Medicine and Biology, vol 454. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4863-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4863-8_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7206-6

  • Online ISBN: 978-1-4615-4863-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics