Skip to main content

Translocation in Cancer: Mechanism of Oncogenic Conversion and Implications for Therapy

  • Chapter
Hereditary Diseases and Blood Transfusion

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 30))

  • 43 Accesses

Abstract

The one universal characteristic of leukaemogenesis is the acquisition of specific chromosomal abnormalities with proven causality to oncogenes. Since the molecular characterization of the translocation involving the c-MYC gene in Burkitts lymphoma, our understanding of the pathways by which genetic translocations in haematologic malignancy lead to oncogenesis has increased dramatically. Molecular studies of the genes involved in these somatic rearrangements and the analysis of their function has elucidated their role in the initiation of tumorigenesis and the sustained cellular growth characteristic of the transformed cell. In global terms, the progression to the malignant state that accompanies translocations appears to proceed not through a single event but multiple steps including but not limited to : (1) the altered expression of DNA regulatory molecules that transcriptionally activate photo-oncogenes requisite for transformation; (2) the deregulation of gene products that control terminal differentiation; (3) the activation of growth factors or their receptors whose overexpression sustains unlimited cell growth; and/or (4) the activation of factors that prevent programmed cell death or apoptosis. Moreover, several preleukemic diseases show evidence of only one predisposing event, which by itself is insufficient to produce the complete immortalization of a cell. This has significant implications for the development of novel strategies for therapeutic intervention which may lead to new “fourth” generation modalities of treatment to reverse these changes through the use of recombinant biologics or gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rabbits T. Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell 1991;67:641–44.

    Article  Google Scholar 

  2. Cole M. Myc meets Hs max. Cell 1991;65:715–16.

    Article  PubMed  CAS  Google Scholar 

  3. Dube’ ID, Kamel-Reid S, Yuan CC, et al. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood 1991;78:2996–3003.

    Google Scholar 

  4. Hatano M, Roberts CWM, Minden M, Crist A, Korsmeyer SJ. Deregulation of a homeobox gene, HOXII, by the t(10;14) in T cell leukemia. Science 1991;253:79–82.

    Article  PubMed  CAS  Google Scholar 

  5. Kennedy MA, Gonzalez-Sarmiento R, Kees UR, et al. HOXII, a homeobox-containing T cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 1991;88: 8900–04

    Article  PubMed  CAS  Google Scholar 

  6. Lu M, Gong Z, Shen W, Ho AD. The tcl-3 proto-oncogene altered by chromosomal translocation in T cell leukemia codes for a homeobox protein. EMBO J 1991;10:2905–10

    PubMed  CAS  Google Scholar 

  7. Kamps MP, Murre C, Sun X-H, Baltimore D. A new homeobox gene contributes the DNA binding domain of the DNA t(1;19) translocation protein in pre-B ALL. Cell 1990;60:547–55.

    Article  PubMed  CAS  Google Scholar 

  8. Nourse J, Mellentin JD, Galili N, et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 1990;60:535–45.

    Article  PubMed  CAS  Google Scholar 

  9. Kakizuka A, Miller WH, Umesono K, et al. Chromosomal translocation promyelocytic leukemia fuses RARx with a novel putative transcription factor, PML. Cell 1991;66:663–74.

    Article  PubMed  CAS  Google Scholar 

  10. De The’ H, Laveau C, Marchio A, Chomeinne C, Degos L, Dejean A. The PML-RARx fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991;66:675–84.

    Article  Google Scholar 

  11. CrossM, DexterT. Growth factor in development, transformation, and tumorigenesis. Cell 1991;64:271–80.

    Article  PubMed  CAS  Google Scholar 

  12. Sawyers CL, Denny CT, Witte ON. Leukemia and the disruption of normal hematopoiesis. Cell 1991;64:337–50.

    Article  PubMed  CAS  Google Scholar 

  13. Heisterkamp N, Jenster G, Hoeve JT, Zovich D, Pattengale PK, Groffen J. Acute leukemia in bcr/abl transgenic mice. Nature 1990;344:251–53.

    Article  PubMed  CAS  Google Scholar 

  14. Klinken SP, Alexander WS, Adams JM. Hemopoietic lineage switch -v-raf oncogene converts Eu-myc transgeneic B cells into macrophages. Cell 1988;53:857–67.

    Article  PubMed  CAS  Google Scholar 

  15. Principato M, Cleveland JL, Rapp UR, et al. Transformation of murine bone marrow cells with combined v-raf-v-myc oncogenes yields clonally related mature B cells and macrophages. Mol Cell Biol 1990;10:3562–68.

    PubMed  CAS  Google Scholar 

  16. Cline T. The affairs of daughterless and the promiscuity of developmental regulators. Cell 1989;59:231–34.

    Article  PubMed  CAS  Google Scholar 

  17. Groopman JE, Molina J-M, Scadden DT. Hematopoietic growth factors: Biology and clinical applications. N Engl J Med 1989;321:1449–59.

    Article  PubMed  CAS  Google Scholar 

  18. Cantley L, Auger K, Carpenter C, et al. Oncogenes and signal transduction. Cell 1991;64:281–302.

    Article  PubMed  CAS  Google Scholar 

  19. Meeker TC, Hardy D, Willman C, Hogan T, Abrams J. Activation of the Interleukin-3 gene by chromosome translocation in acute lymphocytic leukemia with eosinophilia. Blood 1990;76:285–89.

    PubMed  CAS  Google Scholar 

  20. Williams T. Programmed cell death: Apoptosis and oncogenesis. Cell 1991;65:1097–98.

    Article  PubMed  CAS  Google Scholar 

  21. Trauth BC, Klas CM, Peters AMJ, et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989;245:301–45.

    Article  PubMed  CAS  Google Scholar 

  22. Fukuhara S, Rowley JD, Varrakujis D, Golomb HM. Chromosome abnormalities in poorly differentiated lymphocytic lymphoma. Cancer Res 1979;39:3119–31.

    PubMed  CAS  Google Scholar 

  23. McDonnell TJ, Deane N, Platt FM, et al. Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989;57: 79–88.

    Article  PubMed  CAS  Google Scholar 

  24. Limpens J, de Jong D, van Krieken JHJM, et al. Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 1991;6:2271–76.

    PubMed  CAS  Google Scholar 

  25. Ohno H, Takimoto G, Mckeithan TW. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 1990; 60:991–97.

    Article  PubMed  CAS  Google Scholar 

  26. Haider S, Beatty C, Tsujimoto Y, Croce CM. The bcl-2 gene encodes a novel G protein. Nature 1989;342:195–98.

    Article  Google Scholar 

  27. Hockenbery D, Nunez G, Millman C, Schreiber RD, Korsmeyer S. Bcl-2, an inner mitochondrial membrane protein blocks programmed cell death. Nature 1990;348:334–36.

    Article  PubMed  CAS  Google Scholar 

  28. Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce C. Chromosome translocation involved in B-cell neoplasms results from mistakes in VDJ cloning. Science 1985; 229:390–93.

    Article  Google Scholar 

  29. Bakshi A, Jensen JP, Goldman P, et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas; clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985;41:899–906.

    Article  Google Scholar 

  30. Cleary ML, Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 1985;82:7439–43.

    Article  PubMed  CAS  Google Scholar 

  31. Nunez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer S. Deregulated bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol 1990;144:3602–10.

    PubMed  CAS  Google Scholar 

  32. Marshall C. Tumor supressor genes. Cell 1991;64:313–26.

    Article  PubMed  CAS  Google Scholar 

  33. Finlay CA, Hinds PW, Tan T-H, Eliyahu D, Oren M, Levine AJ. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 1988;8:531–39.

    PubMed  CAS  Google Scholar 

  34. Gannon JV, Greaves R, Iggo R, Cane DP. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO 1987;39:1595–1602.

    Google Scholar 

  35. Eliyahu D, Raz A, Gruss P, Givol D, Oren M. Participation of p53 cellular tumor antigen to transformation of normal embryonic cells. Nature 1984;312:646–49.

    Article  PubMed  CAS  Google Scholar 

  36. Jenkins JR, Ruge K, Currie GA. Cellular immortalisation by a CDNA clone encoding the transformation-association phosphoprotein p53. Nature 1984;312:651–54.

    Article  PubMed  CAS  Google Scholar 

  37. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V. Cooperation between gene encoding p53 tumor antigen and ras in cellular transformation. Nature 1984;312:649–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goodenow, R.S. (1995). Translocation in Cancer: Mechanism of Oncogenic Conversion and Implications for Therapy. In: Sibinga, C.T.S., Das, P.C., Briët, E. (eds) Hereditary Diseases and Blood Transfusion. Developments in Hematology and Immunology, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2017-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2017-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5834-3

  • Online ISBN: 978-1-4615-2017-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics