Skip to main content

The Autocorrelation, the Spectrum, and Phase Retrieval

  • Chapter

Abstract

If, to measure a pulse, it’s sufficient to measure its intensity and phase in either the time or frequency domains, then it’s natural to ask just what measurements can, in fact, be made in each of these domains. And the answer, until recently, was the autocorrelation and spectrum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maier, M., W. Kaiser, and J.A. Giordmaine, Phys. Rev. Lett., 1966.17: p. 1275.

    Article  ADS  Google Scholar 

  2. Giordmaine, J. A., et al., Two-Photon Excitation of Fluorescence By Picosecond Light Pulses. Applied Physics Letters, 1967.11(7): p. 216–18.

    Article  ADS  Google Scholar 

  3. Ippen, E.P. and C.V. Shank, Ultrashort Light Pulses—Picosecond Techniques and Applications, ed. S.L. Shapiro. 1977, Berlin: Springer-Verlag.

    Google Scholar 

  4. Stark, H., ed. Image Recovery: Theory and Application. 1987, Academic Press: Orlando.

    MATH  Google Scholar 

  5. Akutowicz, E.J., On the Determination of the Phase of a Fourier Integral, I. Trans. Amer. Math. Soc, 1956. 83(September): p. 179–92.

    MathSciNet  MATH  Google Scholar 

  6. Akutowicz, E.J., On the Determination of the Phase of a Fourier Integral, II. Trans. Amer. Math. Soc, 1957. 84: p. 234–8.

    MathSciNet  Google Scholar 

  7. Sala, K.L., G.A. Kenney-Wallace, and G.E. Hall, CW Autocorrelation Measurements of Picosecond Laser Pulses. IEEE Journal of Quantum Electronics, 1980.16(9): p. 990–6.

    Article  ADS  Google Scholar 

  8. Rayner, D.M., P.A. Hackett, and C. Willis, Ultraviolet Laser, Short Pulse-Width Measurement by Multiphoton Ionization Autocorrelation. Review of Scientific Instruments, 1982. 53(4): p. 537–8.

    Article  ADS  Google Scholar 

  9. Kintzer, E.S. and C. Rempel, Near-Surface Second-Harmonic Generation for Autocorrelation Measurements in the UV. Applied Physics B, 1987. 42: p. 91–5.

    Article  Google Scholar 

  10. Bourne, O.L. and A.J. Alcock, Ultraviolet and Visible Single-Shot Autocorrelator Based on Multiphoton Ionization. Review of Scientific Instruments, 1986. 57(12): p. 2979–82.

    Article  ADS  Google Scholar 

  11. Dadap, J.I., et al., Two-Photon Absorption in Diamond and Its Application to Ultraviolet Femtosecond Pulsewidths Measurement. OL, 1991.16(7): p. 499–501.

    Article  Google Scholar 

  12. Dixon, G.J., Advanced techniques measure ultrashort pulses. Laser Focus World, 1997. 33(9): p. 99–102, 104–5.

    Google Scholar 

  13. Hutchinson, M.H.R., et al., Measurement of 248-nm, Subpicosecond Pulse Durations by Two-Photon Fluorescence of Xenon Excimers. Optics Letters, 1987.12(2): p. 102–4.

    Article  ADS  Google Scholar 

  14. Tünnermann, M.H.R., et al., Single-Shot Autocorrelator for KrF Subpicosecond Pulses Based on Two-Photon Fluorescence of Cadmium Vapor at l = 508 nm. OL, 1991.16(6): p. 402–4.

    Article  Google Scholar 

  15. Wyatt, R. and E.E. Marinero, Versatile Single-Shot Background-Free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration. Applied Physics, 1981. 25: p. 297–301.

    Article  ADS  Google Scholar 

  16. Ishida, Y., K. Naganuma, and T. Yajima, Self-Phase Modulation in Hybridly Mode-Locked CW Dye Lasers. J. Quantum Electronics, 1985. 21(1): p. 69–77.

    Article  ADS  Google Scholar 

  17. Trebino, R., E.K. Gustafson, and A.E. Siegman, Fourth-Order Partial-Coherence Effects in the Formation of Integrated-Intensity Gratings with Pulsed Light Sources. J. Opt. Soc. Amer. B, 1986. 3: p. 1295.

    Article  ADS  Google Scholar 

  18. Birmontas, A., et al., Determination of the duration of fluctuating picosecond optical pulses. Soviet Journal of Quantum Electronics, 1982.12(6): p. 792–4.

    Article  Google Scholar 

  19. Bracewell, R.N., The Fourier Transform and Its Applications. 2nd ed. 1986, New York: McGraw-Hill.

    Google Scholar 

  20. Diels, J.C. and W. Rudolph, Ultrashort Laser Pulse Phenomena. 1996, San Diego: Academic Press.

    Google Scholar 

  21. Penman, Z.E., et al., Experimental comparison of conventional pulse characterisation techniques and second-harmonic-generation frequency-resolved optical gating. Optics Communications, 1998. 155(4–6): p. 297–300.

    Article  ADS  Google Scholar 

  22. Etchepare, J., G. Grillon, and A. Orszag, Third Order Autocorrelation Study of Amplified Subpicosecond Laser Pulses. IEEE Journal of Quantum Electronics, 1983.19(5): p. 775–8.

    Article  ADS  Google Scholar 

  23. Janszky, J. and G. Corradi, Full Intensity Profile Analysis of Ultrashort Laser Pulses Using Four-Wave Mixing or Third Harmonic Generation. Optics Communications, 1986. 60(4): p. 251–6.

    Article  ADS  Google Scholar 

  24. Sarukura, N., et al., Single-Shot Measurement of Subpicosecond KrF Pulse Width by Three-Photon Fluorescence oftheXeF Visible Transition. Optics Letters, 1988.13(11): p. 996–8.

    Article  ADS  Google Scholar 

  25. Schulz, H., et al., Measurement of Intense Ultraviolet Subpicosecond Pulses Using Degenerate Four-Wave Mixing. IEEE Journal of Quantum Electronics, 1989.25(12): p. 2580–5.

    Article  ADS  Google Scholar 

  26. Fischer, R., J. Gauger, and J. Tilgner, Fringe Resolved Third-Order Autocorrelation Functions. Proceedings of American Institute of Physics Conference, 1988.172: p. 727–9.

    ADS  Google Scholar 

  27. Levine, A.M., et al., Induced-Grating Autocorrelation of Ultrashort Pulses in a Slowly responding Medium. J. Opt. Soc. Amer. B, 1994.11(9): p. 1609–18.

    Article  ADS  Google Scholar 

  28. Trebino, R., et al., Chirp and Self-Phase Modulation in Induced-Grating Autocorrelation Measurements of Ultrashort Pulses. Opt. Lett., 1990.15: p. 1079–81.

    Article  ADS  Google Scholar 

  29. Johnson, A.M., et al., Microwatt Picosecond Pulse Autocorrelator Using Photorefractive GaAs.Cr, in OSA Annual Meeting. 1988, Optical Society of America: Washington, D.C.

    Google Scholar 

  30. Lohmann, A.W., G. Weigelt, and B. Wirnitzer, Speckle Masking in Astronomy: Triple Correlation Theory and Applications. Applied Optics, 1983. 22(24): p. 4028–37.

    Article  ADS  Google Scholar 

  31. Lohmann, A.W. and B. Wirnitzer, Triple Correlations. IEEE Proceedings, 1984. 72(7): p. 889–901.

    Article  Google Scholar 

  32. Paulter, N.G.J, and A.K. Majumdar, A New Triple Correlator Design for the Measurement of Ultrashort Laser Pulses. Optics Communications, 1991. 81(1,2): p. 95–100.

    Article  ADS  Google Scholar 

  33. Paulter, N.G.J, and A.K. Majumdar, A New Triple Correlation Technique for Measuring Ultrashort Laser Pulses. Review of Scientific Instruments, 1991. 62(3): p. 567–78.

    Article  ADS  Google Scholar 

  34. Kakarala, R. and G.J. Iverson, Uniqueness of results for multiple correlations of periodic functions. Journal of the Optical Society of America A, 1993.10(7): p. 1517–28.

    Article  ADS  Google Scholar 

  35. Peatross, J. and A. Rundquist, Temporal Decorrelation of short laser pulses. Journal of the Optical Society of America B, 1998.15(1): p. 216–22.

    Article  ADS  Google Scholar 

  36. Gerchberg, R.W. and W.O. Saxton, A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. Optik, 1972. 35: p. 237–46.

    Google Scholar 

  37. Saxton, W.O., Computer Techniques for Image Processing in Electron Microscopy. 1978, New York: Academic Press.

    Google Scholar 

  38. Chung, J.-H. and A.M. Weiner, Ambiguity of ultrashort pulse shapes retrieved from the intensty autocorrelation and power spectrum. IEEE Journal on Selected Topics in Quantum Electronics, 2001. 7(4): p. 656–66.

    Article  Google Scholar 

  39. Diels, J.C, J.J. Fontaine, and F. Simoni, Phase Sensitive Measurements of Femtosecond Laser Pulses From a Ring Cavity, in Proceedings of the International Conference on Lasers. 1983, STS Press: McLean, VA. p. 348–55.

    Google Scholar 

  40. Diels, J.C.M., et al., Control and Measurement of Ultrashort Pulse Shapes (in Amplitute and Phase) with Femtosecond Accuracy. Applied Optics, 1985. 24(9): p. 1270–82.

    Article  ADS  Google Scholar 

  41. Diels, J.C., Measurement Techniques With Mode-Locked Dye Laser, in Ultrashort Pulse Spectroscopy and Applications, Proceedings of SPIE. 1985, SPIE Press: Bellingham. p. 63–70.

    Google Scholar 

  42. Yan, C. and J.C. Diels, Amplitude and Phase Recording of Ultrashort Pulses. Journal of the Optical Society of America B, 1991. 8(6): p. 1259–63.

    Article  ADS  Google Scholar 

  43. Diels, J.C.M., et al. The Femto-nitpicker. in Conference on Lasers & Electro-Optics. 1987.

    Google Scholar 

  44. Le Blanc, S.P., G. Szabo, and R. Sauerbrey, Femtosecond Single-Shot Phase-Sensitive Autocorrelator for the Ultraviolet. Optics Letters, 1991.16(19): p. 1508–10.

    Article  ADS  Google Scholar 

  45. Szabo, G., Z. Bor, and A. Muller, Phase-Sensitive Single-Pulse Autocorrelator for Ultrashort Laser Pulses. Optics Letters, 1988.13(9): p. 746–8.

    Article  ADS  Google Scholar 

  46. Naganuma, K., K. Mogi, and H. Yamada, Time Direction Determination of Asymmetric Ultrashort Optical Pulses from Second-Harmonic Generation Autocorrelation Signals. APL, 1989. 54(13): p. 1201–2.

    Google Scholar 

  47. Naganuma, K., K. Mogi, and H. Yamada, General Method for Ultrashort Light Pulse Chirp Measurement. IEEE J. Quant. Electron., 1989. 25(6): p. 1225–33.

    Article  ADS  Google Scholar 

  48. Naganuma, K., K. Mogi, and H. Yamada, Group-Delay Measurement Using the Fourier Transform of an Interferometric Cross Correlation Generated by White Light. Optics Letters, 1990.15(7): p. 393–5.

    Article  ADS  Google Scholar 

  49. Brun, A., et al., Single-Shot Characterization of Ultrashort Light Pulses. J. Phys. D., 1991. 24: p. 1225–33.

    Article  ADS  Google Scholar 

  50. Szatmári, S., F.P. Schäfer, and J. Jethwa, A Single-Shot Autocorrelator for the Ultraviolet with a Variable Time Window. Review of Scientific Instruments, 1990. 61(3): p. 998–1003.

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trebino, R., Zeek, E. (2000). The Autocorrelation, the Spectrum, and Phase Retrieval. In: Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1181-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1181-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5432-1

  • Online ISBN: 978-1-4615-1181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics