Skip to main content

CT in Pediatric Congenital Heart Disease

  • Chapter
  • First Online:
Cardiac CT and MR for Adult Congenital Heart Disease

Abstract

Congenital heart disease includes an extremely diverse spectrum of congenitally malformed hearts leading to a variety of different hemodynamic consequences. The disease is often associated with anomalies of great vessels and airways and infrequently with those of other systems. Although the evaluation of simple defects, such as atrial septal defect (ASD) and ventricular septal defect (VSD), can be usually completed with echocardiography, supplementary imaging studies, such as computed tomography (CT), magnetic resonance imaging (MRI), and cardiac catheterization, are often required for the accurate diagnosis and optimal treatment of more complex defects. Among those supplementary imaging studies, the role of CT has greatly increased, thanks to recent technical evolutions (Goo et al., Radiographics 23:S147–S165, 2003; Goo et al., Int J Cardiovasc Imaging 21:347–365, 2005; Leschka et al., Radiographics 27:829–846, 2007; Sena and Goo, Computed tomography in congenital heart disease. In: Donoghue V (ed), Radiological imaging of the neonatal chest, 2nd ed, Berlin: Springer, pp 319–346, 2008;Goo, Korean J Radiol 11:4–18, 2010; Goo, Radiol Clin North Am, 49:997–1010, 2011; Goo, CT in pediatric heart disease. In: Saremi F, Achenbach S, Arbustini E, Narula J (eds), Revisiting cardiac anatomy: a computed-tomography-based atlas and reference, Oxford: Wiley, pp 76–84, 2011; Goo, Congenital heart disease in the pediatric population. In: Abramson S (ed), The complete guide to cardiac CT, New York: McGraw-Hill, pp 503–535, 2012).

In this chapter, scan techniques, radiation dose reduction techniques, and clinical applications of pediatric cardiac CT for congenital heart disease are comprehensively reviewed. Up-to-date knowledge and information on these topics, such as intracardiac, four-dimensional airway, and dual-energy evaluations, are included to provide radiologists, technologists, cardiologists, and cardiac surgeons with the contemporary status of pediatric cardiac CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goo HW, Park IS, Ko JK, et al. CT of congenital heart disease: normal anatomy and typical pathological conditions. Radiographics. 2003;23:S147–65.

    Article  PubMed  Google Scholar 

  2. Goo HW, Park IS, Ko JK, et al. Computed tomography for the diagnosis of congenital heart disease in pediatric and adult patients. Int J Cardiovasc Imaging. 2005;21:347–65.

    Article  PubMed  Google Scholar 

  3. Leschka S, Oechslin E, Husmann L, et al. Pre- and postoperative evaluation of congenital heart disease in children and adults with 64-section CT. Radiographics. 2007;27:829–46.

    Article  PubMed  Google Scholar 

  4. Sena L, Goo HW. Computed tomography in congenital heart disease. In: Donoghue V, editor. Radiological imaging of the neonatal chest. 2nd ed. Berlin: Springer; 2008. p. 319–46.

    Chapter  Google Scholar 

  5. Goo HW. State-of-the-art CT, imaging techniques for congenital heart disease. Korean J Radiol. 2010;11:4–18.

    Article  PubMed  Google Scholar 

  6. Goo HW. Cardiac MDCT in children: CT technology overview and interpretation. Radiol Clin North Am. 2011;49:997–1010.

    Article  PubMed  Google Scholar 

  7. Goo HW. CT in pediatric heart disease. In: Saremi F, Achenbach S, Arbustini E, Narula J, editors. Revisiting cardiac anatomy: a computed-tomography-based atlas and reference. Oxford: Blackwell; 2011. p. 76–84.

    Google Scholar 

  8. Goo HW. Congenital heart disease in the pediatric population. In: Abramson S, editor. The complete guide to cardiac CT. New York: McGraw-Hill; 2012. p. 503–35.

    Google Scholar 

  9. Petersilka M, Bruder H, Krauss B, et al. Technical principles of dual source CT. Eur J Radiol. 2008;68:362–8.

    Article  PubMed  Google Scholar 

  10. Nie P, Wang X, Cheng Z, et al. Accuracy, image quality and radiation dose comparison of high-pitch spiral and sequential acquisition on 128-slice dual-source CT angiography in children with congenital heart disease. Eur Radiol. 2012;22:2057–66.

    Article  PubMed  Google Scholar 

  11. Goo HW, Park IS, Ko JK, et al. Visibility of the origin and proximal course of coronary arteries on non-ECG-gated heart CT in patients with congenital heart disease. Pediatr Radiol. 2005;35:792–8.

    Article  PubMed  Google Scholar 

  12. Tsai IC, Lee T, Chen MC, et al. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol. 2007;37:818–25.

    Article  PubMed  Google Scholar 

  13. Goo HW, Seo DM, Yun TJ, et al. Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease. Pediatr Radiol. 2009;39:265–73.

    Article  PubMed  Google Scholar 

  14. Ben Saad M, Rohnean A, Sigal-Cinqualbre A, Adler G, Paul JF. Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol. 2009;39:668–76.

    Article  PubMed  Google Scholar 

  15. Goo HW, Yang DH. Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan. Pediatr Radiol. 2010;40:1670–80.

    Article  PubMed  Google Scholar 

  16. Kim C, Goo HW, Yu JJ, Yun TJ. Coronary sinus ostial atresia with persistent left superior vena cava demonstrated on cardiac CT in an infant with a functional single ventricle. Pediatr Radiol. 2012;42:761–3.

    Article  PubMed  Google Scholar 

  17. Shin JH, Goo HW. Tracheomalacia in infants and children: detection by free-breathing cine CT [abstract VP32-11]. In: Program in brief of the 96th scientific assembly and annual meeting of Radiological Society of North America, Chicago, 2010. p. 164.

    Google Scholar 

  18. Goo HW, Kim HJ. Detection of air trapping on inspiratory and expiratory phase images obtained by 0.3-second cine CT in the lungs of free-breathing young children. AJR Am J Roentgenol. 2006;187:1019–23.

    Article  PubMed  Google Scholar 

  19. Ha HI, Goo HW, Seo JB, et al. Effects of high-resolution CT of the lung using partial versus full reconstruction on motion artifacts and image noise. AJR Am J Roentgenol. 2006;187:618–22.

    Article  PubMed  Google Scholar 

  20. Greenberg SB. Dynamic pulmonary CT in children. AJR Am J Roentgenol. 2012;199:435–40.

    Article  PubMed  Google Scholar 

  21. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17:1510–7.

    Article  PubMed  Google Scholar 

  22. Goo HW. Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children. Pediatr Radiol. 2010;40:1536–44.

    Article  PubMed  Google Scholar 

  23. Chae EJ, Seo JB, Goo HW, et al. Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology. 2008;248:615–24.

    Article  PubMed  Google Scholar 

  24. Goo HW, Chae EJ, Seo JB, et al. Xenon ventilation CT using a dual-source dual-energy technique: dynamic ventilation abnormality in a child with bronchial atresia. Pediatr Radiol. 2008;38:1113–6.

    Article  PubMed  Google Scholar 

  25. Goo HW, Yang DH, Hong SJ, et al. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol. 2010;40:1490–7.

    Article  PubMed  Google Scholar 

  26. Goo HW, Yang DH, Kim N, et al. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience. Korean J Radiol. 2011;12:25–33.

    Article  PubMed  Google Scholar 

  27. Goo HW, Yu J. Redistributed regional ventilation after the administration of a bronchodilator demonstrated on xenon-inhaled dual-energy CT in a patient with asthma. Korean J Radiol. 2011;12:386–9.

    Article  PubMed  Google Scholar 

  28. Zhang LJ, Wang ZJ, Zhou CS, et al. Evaluation of pulmonary embolism in pediatric patients with nephrotic syndrome with dual energy CT pulmonary angiography. Acad Radiol. 2012;19:341–8.

    Article  PubMed  Google Scholar 

  29. Geyer LL, Scherr M, Körner M, et al. Imaging of acute pulmonary embolism using dual energy CT system with rapid kVp switching: initial results. Eur J Radiol. 2012;81:3711–8.

    Article  PubMed  Google Scholar 

  30. Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol. 2012;13:1–11.

    Article  PubMed  Google Scholar 

  31. Goo HW. Pediatric CT: understanding of radiation dose and optimization of imaging techniques. J Korean Radiol Soc. 2005;52:1–5.

    Google Scholar 

  32. Yang DH, Goo HW. Pediatric 16-slice CT protocols: radiation dose and image quality. J Korean Radiol Soc. 2008;59:333–47.

    Google Scholar 

  33. Goo HW. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol. 2011;41:839–47.

    Article  PubMed  Google Scholar 

  34. Goo HW, Suh DS. Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol. 2006;36:344–51.

    Article  PubMed  Google Scholar 

  35. Lee CH, Goo JM, Ye HJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics. 2008;28:1451–9.

    Article  PubMed  Google Scholar 

  36. Goo HW, Suh DS. The influences of tube voltage and scan direction on combined tube current modulation: a phantom study. Pediatr Radiol. 2006;36:833–40.

    Article  PubMed  Google Scholar 

  37. Leschka S, Stolzmann P, Schmid FT, et al. Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol. 2008;18:1809–17.

    Article  PubMed  Google Scholar 

  38. Weustink AC, Mollet NR, Pugliese F, et al. Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology. 2008;248:792–8.

    Article  PubMed  Google Scholar 

  39. McCollough CH, Primak AN, Saba O, et al. Dose performance of a 64-channel dual-source CT scanner. Radiology. 2007;243:775–84.

    Article  PubMed  Google Scholar 

  40. Tzedakis A, Damilakis J, Perisinakis K, et al. Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys. 2007;34:1163–75.

    Article  PubMed  Google Scholar 

  41. Deak PD, Langner O, Leil M, et al. Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology. 2009;252:140–7.

    Article  PubMed  Google Scholar 

  42. Bittencourt MS, Schmidt B, Seltmann M, et al. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int J Cardiovasc Imaging. 2011;27:1081–7.

    Article  PubMed  Google Scholar 

  43. Han BK, Grant KL, Garberich R, et al. Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets. J Cardiovasc Comput Tomogr. 2012;6:200–4.

    Article  PubMed  Google Scholar 

  44. Goo HW. Current trends in cardiac CT in children. Acta Radiol. 2012. doi:10.1258/ar.2012.120452.

    PubMed  Google Scholar 

  45. Hu XH, Huang GY, Pa M, et al. Multidetector CT angiography and 3D reconstruction in young children with coarctation of the aorta. Pediatr Cardiol. 2008;29:726–31.

    Article  PubMed  Google Scholar 

  46. Yang DH, Goo HW, Seo DM, et al. Multislice CT angiography of interrupted aortic arch. Pediatr Radiol. 2008;38:89–100.

    Article  PubMed  Google Scholar 

  47. Ha HI, Seo JB, Lee SH, et al. Imaging of Marfan syndrome: multisystemic manifestations. Radiographics. 2007;27:989–1004.

    Article  PubMed  Google Scholar 

  48. Kalra VB, Gilbert JW, Malhotra A. Loeys-Dietz syndrome: cardiovascular, neuroradiological and musculoskeletal imaging findings. Pediatr Radiol. 2011;41:1495–504.

    Article  PubMed  Google Scholar 

  49. Kalfa D, Gronier C, Ly M, et al. Giant aortic aneurysm in an infant with arterial tortuosity syndrome. Ann Thorac Surg. 2012;94:e51.

    Article  PubMed  Google Scholar 

  50. Kim YS, Goo HW, Jhang WK, et al. Twelve years of experience with vascular ring surgery. Korean J Thorac Cardiovasc Surg. 2009;42:749–56.

    Google Scholar 

  51. Dillman JR, Attili AK, Agarwal PP, et al. Common and uncommon vascular rings and slings: a multi-modality review. Pediatr Radiol. 2011;41:1440–54.

    Article  PubMed  Google Scholar 

  52. Schlesinger AE, Krishnamurthy R, Sena LM, et al. Incomplete double aortic arch with atresia of the distal left arch: distinctive imaging appearance. AJR Am J Roentgenol. 2005;184:1634–9.

    Article  PubMed  Google Scholar 

  53. Hong GS, Goo HW, Song JW. Prevalence of ligamentum arteriosum calcification on multi-section spiral CT and digital radiography. Int J Cardiovasc Imaging. 2012;28 Suppl 1:61–7.

    Article  PubMed  Google Scholar 

  54. Fleck RJ, Pacharn P, Fricke BL, et al. Imaging findings in pediatric patients with persistent airway symptoms after surgery for double aortic arch. AJR Am J Roentgenol. 2002;178:1275–9.

    Article  PubMed  Google Scholar 

  55. Goo HW. Evaluation of the airways in patients with congenital heart disease using multislice CT. J Korean Pediatr Cardiol Soc. 2004;8:37–43.

    Google Scholar 

  56. Lee EY, Zurakowski D, Waltz DA, et al. MDCT evaluation of the prevalence of tracheomalacia in children with mediastinal aortic vascular anomalies. J Thorac Imaging. 2008;23:258–65.

    Article  PubMed  Google Scholar 

  57. Philip S, Chen SY, Wu MH, et al. Retroesophageal aortic arch: diagnostic and therapeutic implications of a rare vascular ring. Int J Cardiol. 2001;79:133–41.

    Article  PubMed  CAS  Google Scholar 

  58. Song J, Kim WH, Kim H, et al. Repair of coarctation in right circumflex retroesophageal arch. Ann Thorac Surg. 2009;87:307–9.

    Article  PubMed  Google Scholar 

  59. Scott DJ, Campbell DN, Clarke DR, et al. Twenty-year surgical experience with congenital supravalvular aortic stenosis. Ann Thorac Surg. 2009;87:1501–7.

    Article  PubMed  Google Scholar 

  60. Kimura-Hayama ET, Melendez G, Mendizabal AL, et al. Uncommon congenital and acquired aortic diseases: role of multidetector CT angiography. Radiographics. 2010;30:79–98.

    Article  PubMed  Google Scholar 

  61. Ko SM, Song MG, Hwang HK. Bicuspid aortic valve: spectrum of imaging findings at cardiac MDCT and cardiovascular MRI. AJR Am J Roentgenol. 2012;198:89–97.

    Article  PubMed  Google Scholar 

  62. Wang XM, Wu LB, Sun C, et al. Clinical application of 64-slice spiral CT in the diagnosis of the tetralogy of Fallot. Eur J Radiol. 2007;64:296–301.

    Article  PubMed  Google Scholar 

  63. Rajeshkannan R, Moorthy S, Sreekumar KP, et al. Role of 64-MDCT in evaluation of pulmonary atresia with ventricular septal defect. AJR Am J Roentgenol. 2010;194:110–8.

    Article  PubMed  Google Scholar 

  64. Lin MT, Wang JK, Chen YS, et al. Detection of pulmonary arterial morphology in tetralogy of Fallot with pulmonary atresia by computed tomography: 12 years of experience. Eur J Pediatr. 2012;171:579–86.

    Article  PubMed  Google Scholar 

  65. Park JH, Kim HS, Jin GY, et al. Demonstration of peripheral pulmonary stenosis and supravalvular aortic stenosis by different cardiac imaging modalities in a patient with Williams syndrome – usefulness of noninvasive imaging studies. Int J Cardiol. 2008;128:e95–7.

    Article  PubMed  Google Scholar 

  66. Monge MC, Mainwaring RD, Sheikh AY. Surgical reconstruction of peripheral pulmonary artery stenosis in Williams and Alagille syndromes. J Thorac Cardiovasc Surg. 2012. doi:10.1016/j.jtcvs.2012.09.102. 2013;145:476–81

  67. Greil GF, Schoebinger M, Kuettner A, et al. Imaging of aortopulmonary collateral arteries with high-resolution multidetector CT. Pediatr Radiol. 2006;36:502–9.

    Article  PubMed  Google Scholar 

  68. Taragin BH, Berdon WE, Printz B. MRI assessment of bronchial compression in absent pulmonary valve syndrome and review of the syndrome. Pediatr Radiol. 2006;36:71–5.

    Article  PubMed  Google Scholar 

  69. Brown JW, Ruzmetov M, Vijay P, et al. Surgical treatment of absent pulmonary valve syndrome associated with bronchial obstruction. Ann Thorac Surg. 2006;82:2221–6.

    Article  PubMed  Google Scholar 

  70. Kang MJ, Park CM, Lee CH, et al. Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics. 2010;30:685–98.

    Article  PubMed  Google Scholar 

  71. Kim BH, Seo JB, Chae EJ, et al. Analysis of perfusion defects by causes other than acute pulmonary thromboembolism on contrast-enhanced dual-energy CT in consecutive 537 patients. Eur J Radiol. 2012;81:e647–52.

    Article  PubMed  Google Scholar 

  72. Lee KH, Yoon CS, Ko C, et al. Use of imaging for assessing anatomical relationships of tracheobronchial anomalies associated with left pulmonary artery sling. Pediatr Radiol. 2001;31:269–78.

    Article  PubMed  CAS  Google Scholar 

  73. du Plessis AM, Andronikou S, Goussard P. Bridging bronchus and sling left pulmonary artery: a rare entity demonstrated by coronal CT with 3-D rendering display and minimal-intensity projections. Pediatr Radiol. 2008;38:1024–6.

    Article  PubMed  Google Scholar 

  74. Calcagni G, Brunelle F, Vouhe P, et al. CT demonstration of “chicken trachea” resulting from complete cartilaginous rings of the trachea in ring-sling complex. Pediatr Radiol. 2008;38:798–800.

    Article  PubMed  Google Scholar 

  75. Zhong YM, Jaffe RB, Zhu M, et al. CT assessment of tracheobronchial anomaly in left pulmonary artery sling. Pediatr Radiol. 2010;40:1755–62.

    Article  PubMed  Google Scholar 

  76. Vyas HV, Greenberg SG, Krishnamurthy R. MR imaging and CT evaluation of congenital pulmonary vein abnormalities in neonates and infants. Radiographics. 2012;32:87–98.

    Article  PubMed  Google Scholar 

  77. Dillman JR, Yarram SG, Hernandez RJ. Imaging of pulmonary venous developmental anomalies. AJR Am J Roentgenol. 2009;192:1272–85.

    Article  PubMed  Google Scholar 

  78. Kim TH, Kim YM, Suh CH, et al. Helical CT angiography and three-dimensional reconstruction of total anomalous pulmonary venous connections in neonates and infants. AJR Am J Roentgenol. 2000;175:1381–6.

    Article  PubMed  CAS  Google Scholar 

  79. Oh KH, Choo KS, Lim SJ, et al. Multidetector CT evaluation of total anomalous pulmonary venous connections: comparison with echocardiography. Pediatr Radiol. 2009;39:950–4.

    Article  PubMed  Google Scholar 

  80. Otsuka M, Itoh A, Haze K. Sinus venosus type of atrial septal defect with partial anomalous pulmonary venous return evaluated by multislice CT. Heart. 2004;90:901.

    Article  PubMed  CAS  Google Scholar 

  81. Konen E, Raviv-Zilka L, Cohen RA, et al. Congenital pulmonary venolobar syndrome: spectrum of helical CT findings with emphasis on computerized reformatting. Radiographics. 2003;23:1175–84.

    Article  PubMed  Google Scholar 

  82. Goo HW, Kim YH, Ko JK, et al. Horseshoe lung: useful angiographic and bronchographic images using multidetector-row spiral CT in two infants. Pediatr Radiol. 2002;32:529–32.

    Article  PubMed  Google Scholar 

  83. Ou P, Marini D, Celermajer DS, et al. Non-invasive assessment of congenital pulmonary vein stenosis in children using cardiac-non-gated CT with 64-slice technology. Eur J Radiol. 2009;70:595–9.

    Article  PubMed  Google Scholar 

  84. Mataciunas M, Gumbiene L, Cibiras S, et al. CT angiography of mildly symptomatic, isolated, unilateral right pulmonary vein atresia. Pediatr Radiol. 2009;30:1087–90.

    Article  Google Scholar 

  85. Irwin RB, Greaves M, Schmitt M. Left superior vena cava: revisited. Eur Heart J Cardiovasc Imaging. 2012;13:284–91.

    Article  PubMed  CAS  Google Scholar 

  86. Fang CC, Jao YT, Han SC, et al. Persistent left superior vena cava: multi-slice CT images and report of a case. Int J Cardiol. 2007;121:112–4.

    Article  PubMed  Google Scholar 

  87. Kim SH, Chung JW, Im JG, et al. Subaortic left innominate vein: radiologic findings and consideration of embryogenesis. J Thorac Imaging. 1999;14:142–6.

    Article  PubMed  CAS  Google Scholar 

  88. Chen SJ, Liu KL, Chen HY, et al. Anomalous brachiocephalic vein: CT, embryology, and clinical implications. AJR Am J Roentgenol. 2005;184:1235–40.

    Article  PubMed  Google Scholar 

  89. Greenberg SB, Bhutta ST. A dual contrast injection technique for multidetector computed tomography angiography of Fontan procedures. Int J Cardiovasc Imaging. 2008;24:345–8.

    Article  PubMed  CAS  Google Scholar 

  90. Prabhu SP, Mahmood S, Sena L, et al. MDCT evaluation of pulmonary embolism in children and young adults following a lateral tunnel Fontan procedure: optimizing contrast-enhancement techniques. Pediatr Radiol. 2009;39:938–44.

    Article  PubMed  Google Scholar 

  91. Goo HW, Yang DH, Park IS, et al. Time-resolved three-dimensional contrast-enhanced magnetic resonance angiography in patients who have undergone a Fontan operation or bidirectional cavopulmonary connection: initial experience. J Magn Reson Imaging. 2007;25:727–36.

    Article  PubMed  Google Scholar 

  92. Goo HW. Haemodynamic findings on cardiac CT in children with congenital heart disease. Pediatr Radiol. 2011;41:250–61.

    Article  PubMed  Google Scholar 

  93. Kim YM, Yoo SJ, Kim TH, et al. Three-dimensional computed tomography in children with compression of the central airways complicating congenital heart disease. Cardiol Young. 2002;12:44–50.

    Article  PubMed  Google Scholar 

  94. Choo KS, Lee HD, Ban JE, et al. Evaluation of obstructive airway lesions in complex congenital heart disease using composite volume-rendered images from multislice CT. Pediatr Radiol. 2006;36:219–23.

    Article  PubMed  Google Scholar 

  95. Jhang WK, Park JJ, Seo DM, et al. Perioperative evaluation of airways in patients with arch obstruction and intracardiac defects. Ann Thorac Surg. 2008;85:1753–8.

    Article  PubMed  Google Scholar 

  96. Tsai WL, Wei HJ, Tsai IC. High-take-off coronary artery: a haemodynamically minor, but surgically important coronary anomaly. Pediatr Radiol. 2010;40:232–3.

    Article  PubMed  Google Scholar 

  97. Kim SJ, Kim WH, Lim C, et al. Commissural malalignment of aortic-pulmonary sinus in complete transposition of great arteries. Ann Thorac Surg. 2003;76:1906–10.

    Article  PubMed  Google Scholar 

  98. Ou P, Mousseaux E, Azarine A, et al. Detection of coronary complications after the arterial switch operation for transposition of the great arteries: first experience with multislice computed tomography in children. J Thorac Cardiovasc Surg. 2006;131:639–43.

    Article  PubMed  Google Scholar 

  99. Ergul Y, Nisli K, Kayserili H, et al. Evaluation of coronary artery abnormalities in Williams syndrome patients using myocardial perfusion scintigraphy and CT angiography. Cardiol J. 2012;19:301–8.

    Article  PubMed  Google Scholar 

  100. Kim HJ, Goo HW, Park SH, et al. Left ventricle volume measured by cardiac CT in an infant with a small left ventricle: a new and accurate method in determining uni- or biventricular repair. Pediatr Radiol. 2012. doi:10.1007/00247-012-2464-5. 2013;43:243–6

  101. Goo HW, Park IS. Left ventricular noncompaction in an infant: use of non-ECG-gated cardiac CT. Pediatr Radiol. 2007;37:217–20.

    Article  PubMed  Google Scholar 

  102. Melendez-Ramirez G, Castillo-Castellon F, Espinola-Zavaleta N, et al. Left ventricular noncompaction: a proposal of new diagnostic criteria by multidetector computed tomography. J Cardiovasc Comput Tomogr. 2012;6:346–54.

    Article  PubMed  Google Scholar 

  103. Shan SJ, Johnson PT, Fishman EK. Asymptomatic cor triatriatum: utility of 64-slice multidetector computed tomography with 3-dimensional volume rendering. J Comput Assist Tomogr. 2009;33:779–81.

    Article  PubMed  Google Scholar 

  104. Gonzalez-Ramirez N, Castillo-Castellon F, Kimura-Hayama E. Cor triatriatum sinister versus bowed septum primum in an infant with total anomalous pulmonary venous connection: a difficult imaging distinction. Pediatr Radiol. 2012;42:1254–8.

    Article  PubMed  Google Scholar 

  105. Chauvaud SM, Hernigou AC, Mousseaux ER, et al. Ventricular volumes in Ebstein’s anomaly: x-ray multislice computed tomography before and after surgery. Ann Thorac Surg. 2006;81:1443–9.

    Article  PubMed  Google Scholar 

  106. Lembcke A, Koch C, Dohmen PM, et al. Electrocardiographic-gated multislice computed tomography for visualization of cardiac morphology in congenitally corrected transposition of the great arteries. J Comput Assist Tomogr. 2005;29:234–7.

    Article  PubMed  Google Scholar 

  107. Chen SJ, Lin MT, Liu KL, et al. Usefulness of 3D reconstructed computed tomography imaging for double outlet right ventricle. J Formos Med Assoc. 2008;107:371–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Woo Goo MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goo, H.W. (2014). CT in Pediatric Congenital Heart Disease. In: Saremi, F. (eds) Cardiac CT and MR for Adult Congenital Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8875-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8875-0_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8874-3

  • Online ISBN: 978-1-4614-8875-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics