Skip to main content

Purine and Pyrimidine Pathways

  • Living reference work entry
  • First Online:
  • 567 Accesses

Synonyms

Deoxypyrimidine nucleotide/nucleoside metabolism; Nucleoside salvage; Purine recycle pathway; Purine salvage pathway; Pyrimidine deoxyribonucleotide de novo biosynthesis

Definitions

Plasmodium falciparum makes use of the purine salvage and pyrimidine de novo pathways to synthesize nucleic acids to meet the parasite’s requirement for rapid replication. Enzymes that compose these pathways pose as attractive drug targets for disease control in humans.

Purine Salvage Pathway

Plasmodium falciparum has a high demand for purine nucleotides during the extensive DNA replication that takes place throughout the blood and liver stages. Since most parasitic protozoa lack a de novo purine nucleotide biosynthetic pathway (Sherman 1979), they rely exclusively on the salvage of preformed purines from the host to supply the requirement for purines (de Koning et al. 2005). The fact that Plasmodium parasites are purine auxotrophs (Büngener and Nielsen 1968) has made the enzymes comprising the...

This is a preview of subscription content, log in via an institution.

References

  • Berg JM, Tymoczko JL, Stryer L, Gatto GJ. Biochemistry. 7th ed. New York: WH Freeman and Company; 2012, pp. 290–296; 736–745.

    Google Scholar 

  • Berman PA, Human L, Freese JA. Xanthine oxidase inhibits growth of Plasmodium falciparum in human erythrocytes in vitro. J Clin Invest. 1991;88(6):1848–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Büngener W, Nielsen G. Nucleic acid metabolism in experimental malaria. 2. Incorporation of adenosine and hypoxanthine into the nucleic acids of malaria parasites (Plasmodium berghei and Plasmodium vinckei). Z Tropenmed Parasitol. 1968;19(2):185–97.

    PubMed  Google Scholar 

  • Bzowska A, Kulikowska E, Shugar D. Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol Ther. 2000;88(3):349–425.

    Article  PubMed  CAS  Google Scholar 

  • Cassera MB, Hazleton KZ, Merino EF, Obaldia 3rd N, Ho MC, Murkin AS, DePinto R, Gutierrez JA, Almo SC, Evans GB, Babu YS, Schramm VL. Plasmodium falciparum parasites are killed by a transition state analogue of purine nucleoside phosphorylase in a primate animal model. PLoS One. 2011a;6(11):e26916.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cassera MB, Zhang Y, Hazleton KZ, Schramm VL. Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem. 2011b;11(16):2103–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ciardo F, Salerno C, Curatolo P. Neurologic aspects of adenylosuccinate lyase deficiency. J Child Neurol. 2001;16(5):301–8.

    PubMed  CAS  Google Scholar 

  • Davies M, Heikkilä T, McConkey GA, Fishwick CW, Parsons MR, Johnson AP. Structure-based design, synthesis, and characterization of inhibitors of human and Plasmodium falciparum dihydroorotate dehydrogenases. J Med Chem. 2009;52(9):2683–93.

    Article  PubMed  CAS  Google Scholar 

  • de Koning HP, Bridges DJ, Burchmore RJ. Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol Rev. 2005;29(5):987–1020.

    Article  PubMed  CAS  Google Scholar 

  • Ducati RG, Namanja-Magliano HA, Schramm VL. Transition-state inhibitors of purine salvage and other prospective enzyme targets in malaria. Future Med Chem. 2013;5(11):1341–60.

    Article  PubMed  CAS  Google Scholar 

  • Farthing D, Sica D, Gehr T, Wilson B, Fakhry I, Larus T, Farthing C, Karnes HT. An HPLC method for determination of inosine and hypoxanthine in human plasma from healthy volunteers and patients presenting with potential acute cardiac ischemia. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;854(1–2):158–64.

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.

    Article  PubMed  CAS  Google Scholar 

  • Hazleton KZ, Ho MC, Cassera MB, Clinch K, Crump DR, Rosario Jr I, Merino EF, Almo SC, Tyler PC, Schramm VL. Acyclic immucillin phosphonates: second-generation inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Chem Biol. 2012;19(6):721–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kalckar HM. Differential spectrophotometry of purine compounds by means of specific enzymes: I. Determination of hydroxypurine compounds. J Biol Chem. 1947;167(2):429–43.

    PubMed  CAS  Google Scholar 

  • Kantrowitz ER. Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase. Arch Biochem Biophys. 2012;519(2):81–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Keough DT, Ng AL, Winzor DJ, Emmerson BT, de Jersey J. Purification and characterization of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase and comparison with the human enzyme. Mol Biochem Parasitol. 1999;98(1):29–41.

    Article  PubMed  CAS  Google Scholar 

  • Kicska GA, Tyler PC, Evans GB, Furneaux RH, Kim K, Schramm VL. Transition state analogue inhibitors of purine nucleoside phosphorylase from Plasmodium falciparum. J Biol Chem. 2002a;277(5):3219–25.

    Article  PubMed  CAS  Google Scholar 

  • Kicska GA, Tyler PC, Evans GB, Furneaux RH, Schramm VL, Kim K. Purine-less death in Plasmodium falciparum induced by immucillin-H, a transition state analogue of purine nucleoside phosphorylase. J Biol Chem. 2002b;277(5):3226–31.

    Article  PubMed  CAS  Google Scholar 

  • Lewandowicz A, Tyler PC, Evans GB, Furneaux RH, Schramm VL. Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase. J Biol Chem. 2003;278(34):31465–8.

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb WN, Kantrowitz ER. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase. Acc Chem Res. 2012;45(3):444–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Phillips MA, Rathod PK. Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. Infect Disord Drug Targets. 2010;10(3):226–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Queen SA, Vander Jagt D, Reyes P. Properties and substrate specificity of a purine phosphoribosyltransferase from the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol. 1988;30(2):123–33.

    Article  PubMed  CAS  Google Scholar 

  • Sherman IW. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979;43(4):453–95.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shu Q, Nair V. Inosine monophosphate dehydrogenase (IMPDH) as a target in drug discovery. Med Res Rev. 2008;28(2):219–32.

    Article  PubMed  CAS  Google Scholar 

  • Sujay Subbayya IN, Balaram H. Evidence for multiple active states of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Biochem Biophys Res Commun. 2000;279(2):433–7.

    Article  PubMed  CAS  Google Scholar 

  • Taylor Ringia EA, Tyler PC, Evans GB, Furneaux RH, Murkin AS, Schramm VL. Transition state analogue discrimination by related purine nucleoside phosphorylases. J Am Chem Soc. 2006;128(22):7126–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ting LM, Shi W, Lewandowicz A, Singh V, Mwakingwe A, Birck MR, Ringia EA, Bench G, Madrid DC, Tyler PC, Evans GB, Furneaux RH, Schramm VL, Kim K. Targeting a novel Plasmodium falciparum purine recycling pathway with specific immucillins. J Biol Chem. 2005;280(10):9547–54.

    Article  PubMed  CAS  Google Scholar 

  • Tyler PC, Taylor EA, Fröhlich RF, Schramm VL. Synthesis of 5′-methylthio coformycins: specific inhibitors for malarial adenosine deaminase. J Am Chem Soc. 2007;129(21):6872–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wünschiers R. Carbohydrate metabolism and citrate cycle. In: Michal G, Schomburg D, editors. Biochemical pathways: an atlas of biochemistry and molecular biology. Hoboken: Wiley; 2012. p. 130–3.

    Google Scholar 

  • Zalkin H. The amidotransferases. Adv Enzymol Relat Areas Mol Biol. 1993;66:203–309.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hilda A. Namanja-Magliano or Rodrigo G. Ducati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Namanja-Magliano, H.A., Ducati, R.G., Schramm, V.L. (2013). Purine and Pyrimidine Pathways. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics