Skip to main content

From Piaget’s Theory to APOS Theory: Reflective Abstraction in Learning Mathematics and the Historical Development of APOS Theory

  • Chapter
  • First Online:

Abstract

The aim of this chapter is to explain where APOS Theory came from and when it originated. A discussion of the main components of APOS Theory—the mental stages or structures of Action, Process, Object, and Schema and the mental mechanisms of interiorization, coordination, reversal, encapsulation, and thematization—points to when they first came on the scene and how their meanings developed. The published research of those involved in the development of APOS Theory, which includes some early colleagues and students of Dubinsky as well as those who were members of the Research in Undergraduate Mathematics Education Community (RUMEC), is described. The descriptions in this chapter are very brief and will be expanded in later chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Capitalization is used to differentiate between Piaget’s terminology and Dubinsky’s use of Action, Process, Object, and Schema.

  2. 2.

    As Piaget (1972) acknowledged, subsequent research showed that the age at which various cognitive developments occur could vary as a function of the child’s culture and other factors such as aptitudes and interests.

  3. 3.

    Piaget is using the symbol “+” here, not as addition, but as “and.”

  4. 4.

    Later, SETL was replaced by the interpretive programming language, ISETL, developed by G. Levin.

References

  • Arnon, I., Nesher, P., & Nirenburg, R. (2001). Where do fractions encounter their equivalents? Can this encounter take place in elementary school? International Journal of Computers for Mathematical Learning, 6, 167–214.

    Article  Google Scholar 

  • Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. In Research in Collegiate Mathematics Education II. CBMS Issues in Mathematics Education (Vol. 6, pp. 1–32). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Asiala, M., Brown, A., Kleiman, J., & Mathews, D. (1998). The development of students’ understanding of permutations and symmetries. International Journal of Mathematical Learning, 3, 13–43.

    Google Scholar 

  • Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. (1997). The development of students’ graphical understanding of the derivative. The Journal of Mathematical Behavior, 16, 399–431.

    Article  Google Scholar 

  • Asiala, M., Dubinsky, E., Mathews, D., Morics, S., & Oktaç, A. (1997). Development of students’ understanding of cosets, normality and quotient groups. The Journal of Mathematical Behavior, 16, 241–309.

    Article  Google Scholar 

  • Baker, B., Cooley, L., & Trigueros, M. (2000). A calculus graphing schema. Journal for Research in Mathematics Education, 31, 557–578.

    Article  Google Scholar 

  • Baxter, N., Dubinsky, E., & Levin, G. (1988). Learning discrete mathematics with ISETL. New York: Springer.

    Google Scholar 

  • Beth, E. W., & Piaget, J. (1974). Mathematical epistemology and psychology (W. Mays, Trans.). Dordrecht, The Netherlands: D. Reidel. (Original work published 1966).

    Google Scholar 

  • Brown, A., DeVries, D., Dubinsky, E., & Thomas, K. (1997). Learning binary operations, groups, and subgroups. The Journal of Mathematical Behavior, 16, 187–239.

    Article  Google Scholar 

  • Brown, A., McDonald, M., & Weller, K. (2010). Step by step: Infinite iterative processes and actual infinity. In Research in Collegiate Mathematics Education VII. CBMS Issues in Mathematics Education (Vol. 16, pp. 115–141). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., St. John, D., et al. (1997). Constructing a schema: The case of the chain rule. The Journal of Mathematical Behavior, 16, 345–364.

    Article  Google Scholar 

  • Clark, J., Hemenway, C., St. John, D., Tolias, G., & Vakil, R. (1999). Student attitudes toward abstract algebra. Primus, 9, 76–96.

    Article  Google Scholar 

  • Cooley, L., Trigueros, M., & Baker, B. (2007). Schema thematization: A theoretical framework and an example. Journal for Research in Mathematics Education, 38, 370–392.

    Google Scholar 

  • Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidaković, D. (1996). Understanding the limit concept: Beginning with a coordinated process schema. The Journal of Mathematical Behavior, 15, 167–192.

    Article  Google Scholar 

  • Czarnocha, B., Dubinsky, E., Loch, S., Prabhu, V., & Vidaković, D. (2001). Conceptions of area: In students and in history. The College Mathematics Journal, 32, 99–109.

    Article  Google Scholar 

  • Dubinsky, E. (1984). The cognitive effect of computer experiences on learning abstract mathematical concepts. Korkeakoulujen Atk-Vutiset, 2, 41–47.

    Google Scholar 

  • Dubinsky, E. (1985, March). Computer experiences as an aid in learning mathematics concepts. Working paper for the Conference on the Influence of Computers and Informatics on Mathematics and its Teaching, Strasbourg.

    Google Scholar 

  • Dubinsky, E. (1986a). On teaching mathematical induction, I. The Journal of Mathematical Behavior, 5, 305–317.

    Google Scholar 

  • Dubinsky, E. (1986b). Reflective abstraction and computer experiences: A new approach to teaching theoretical mathematics. In G. Lappan & R. Even (Eds.), Proceedings of the 8th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. East Lansing, MI.

    Google Scholar 

  • Dubinsky, E. (1989). On teaching mathematical induction, II. The Journal of Mathematical Behavior, 8, 285–304.

    Google Scholar 

  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95–123). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Dubinsky, E., & McDonald, M. (2001). APOS: A constructivist theory of learning in undergrad mathematics education. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 273–280). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005a). Some historical issues and paradoxes regarding the concept of infinity: An APOS analysis: Part 1. Educational Studies in Mathematics, 58, 335–359.

    Article  Google Scholar 

  • Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005b). Some historical issues and paradoxes regarding the concept of infinity: An APOS analysis: Part 2. Educational Studies in Mathematics, 60, 253–266.

    Article  Google Scholar 

  • Dubinsky, E., Weller, K., Stenger, C., & Vidaković, D. (2008). Infinite iterative processes: The tennis ball problem. European Journal of Pure and Applied Mathematics, 1(1), 99–121.

    Google Scholar 

  • Gray, E., & Tall, D. O. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. Journal for Research in Mathematics Education, 26, 115–141.

    Google Scholar 

  • Kú, D., Trigueros, M., & Oktaç, A. (2008). Comprensión del concepto de base de un espacio vectorial desde el punto de vista de la teoría APOE. Educación Matemática, 20(2), 65–89.

    Google Scholar 

  • McDonald, M., Mathews, D. & Strobel, K. (2000). Understanding sequences: A tale of two objects. Research in Collegiate Mathematics Education IV. CBMS Issues in Mathematics Education (Vol. 8, pp. 77–102). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Oktaç, A., & Trigueros, M. (2010). ¿Cómo se aprenden los conceptos de álgebra lineal? Revista Latinoamericana de Investigación en Matemática Educativa, 13(4-II), 373–385.

    Google Scholar 

  • Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of APOS theory. Linear Algebra and its Applications, 432, 2112–2124.

    Article  Google Scholar 

  • Piaget, J. (1965). The child’s conception of number (C. Gattegno & F. M. Hodgson, Trans.). New York: W. W. Norton. (Original work published 1941).

    Google Scholar 

  • Piaget, J. (1970). Structuralism (C. Maschler, Trans.). New York: Basic Books. (Original work published 1968).

    Google Scholar 

  • Piaget, J. (1971). Biology and knowledge (P. Walsh, Trans.). Chicago: University of Chicago Press. (Original work published 1967).

    Google Scholar 

  • Piaget, J. (1972). Intellectual evolution from adolescences to adulthood. Human Development, 15, 1–12.

    Article  Google Scholar 

  • Piaget, J. (1973). Comments on mathematical education. In A. G. Howson (Ed.), Developments in mathematical education: Proceedings of the second international congress on mathematical education (pp. 79–87). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Piaget, J. (1975/1985). El nacimiento de la inteligencia en el niño. Barcelona: Crítica.

    Google Scholar 

  • Piaget, J. (1980). Adaptation and intelligence (S. Eames, Trans.). Chicago: University of Chicago Press. (Original work published 1974).

    Google Scholar 

  • Piaget, J., & García, R. (1989). Psychogenesis and the history of science (H. Feider, Trans.). New York: Columbia University Press. (Original work published 1983).

    Google Scholar 

  • Piaget, J., Grize, B., Szeminska, A., & Bang, V. (1977). Epistemology and psychology of functions (J. Castellanos & V. Anderson, Trans.). Dordrecht, The Netherlands: D. Reidel. (Original work published 1968).

    Google Scholar 

  • Roa-Fuentes, S., & Oktaç, A. (2010). Construcción de una descomposición genética: Análisis teórico del concepto transformación lineal. Revista Latinoamericana de Investigación en Matemática Educativa, 13(1), 89–112.

    Google Scholar 

  • Sfard, A. (1987). Two conceptions of mathematical notions: Operational and structural. In J. C. Bergeron, N. Herscovics, & C. Kieran (Eds.), Proceedings of the 11th Annual Conference of the International Group for the Psychology of Mathematical Education (Vol. 3, pp. 162–169). Montreal, Canada.

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects on different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Stenger, C., Weller, K., Arnon, I., Dubinsky, E., & Vidaković, D. (2008). A search for a constructivist approach for understanding the uncountable set P(N). Revisto Latinoamericano de Investigacion en Matematicas Educativas, 11(1), 93–126.

    Google Scholar 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–168.

    Article  Google Scholar 

  • Trigueros, M., & Oktaç, A. (2005). La théorie APOS et l’enseignement de l’Algèbre Linéaire. Annales de Didactique et de Sciences Cognitives. Revue internationale de didactique des mathématiques (Vol. 10, pp. 157–176). IREM de Strasbourg, Université Louis Pasteur.

    Google Scholar 

  • Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14, 239–305.

    Article  Google Scholar 

  • Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20, 356–366.

    Article  Google Scholar 

  • Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics, and Technology Education, 9, 5–28.

    Article  Google Scholar 

  • Weller, K., Arnon, I., & Dubinsky, E. (2011). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion: Strength and stability of belief. Canadian Journal of Science, Mathematics, and Technology Education, 11, 129–159.

    Article  Google Scholar 

  • Weller, K., Brown, A., Dubinsky, E., McDonald, M., & Stenger, C. (2004). Intimations of infinity. Notices of the AMS, 51, 741–750.

    Google Scholar 

  • Weller, K., Clark, J. M., Dubinsky, E., Loch, S., McDonald, M. A., & Merkovsky, R. (2003). Student performance and attitudes in courses based on APOS theory and the ACE teaching cycle. In Research in Collegiate Mathematics Education V. CBMS Issues in Mathematics Education (Vol. 12, pp. 97–131). Providence, RI: American Mathematical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arnon, I. et al. (2014). From Piaget’s Theory to APOS Theory: Reflective Abstraction in Learning Mathematics and the Historical Development of APOS Theory. In: APOS Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7966-6_2

Download citation

Publish with us

Policies and ethics