Skip to main content

The Role of BRCA1 and BRCA2 in Anticancer Drug Therapy

  • Chapter
  • First Online:
Advances in DNA Repair in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 72))

  • 1333 Accesses

Abstract

The genome is under constant assault from both endogenous and exogenous sources such as reactive oxygen species and ionizing radiation capable of inducing a wide array of mutagenic changes [1]. To maintain genomic integrity cells have evolved elegant mechanisms to recognize DNA damage, arrest the cell cycle, and activate specific repair pathways. One of the most cytotoxic lesions that a cell must contend with is a double-strand break (DSB) because even a single unrepaired DSB is capable of inducing cell death [2]. To repair a DSB, cells have at least four mechanisms at their disposal: homologous recombination (HR), single-strand annealing (SSA), nonhomologous end-joining (NHEJ), and microhomology-mediated end joining (MMEJ) (Fig. 1) [3]. HR relies on the sister chromatid as a template to fill in damaged or missing DNA, restoring the chromosome to its original condition. In cells with competent DNA repair mechanisms, HR is the preferred pathway of repair during the S and G2 phase of the cell cycle when the sister chromatid is available [4]. SSA, a variant of HR that is thought to play a minor role in the repair DSBs, utilizes homologous repeats surrounding a DSB to anneal the broken ends resulting in the deletion of the intervening sequence. In contrast, NHEJ and MMEJ both operate throughout the cell cycle and directly ligate two ends of a DSB; however, MMEJ always introduces small deletions at broken ends to produce a region of microhomology to facilitate ligation [5]. The important point to note is that HR is considered an error-free pathway whereas SSA, NHEJ, and MMEJ are error-prone because they can create gross chromosomal aberrations if ligation occurs incorrectly—potentially leading to neoplastic transformation [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  PubMed  CAS  Google Scholar 

  2. Bennett CB, Lewis AL, Baldwin KK, Resnick MA (1993) Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc Natl Acad Sci USA 90:5613–5617

    Article  PubMed  CAS  Google Scholar 

  3. Helleday T, Lo J, van Gent DC, Engelward BP (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6:923–935

    Article  CAS  Google Scholar 

  4. Rothkamm K, Krüger I, Thompson LH, Löbrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715

    Article  PubMed  CAS  Google Scholar 

  5. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    Article  PubMed  CAS  Google Scholar 

  6. Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4:665–676

    Article  PubMed  CAS  Google Scholar 

  7. Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, Walter JC, Livingston DM (2006) The BRCA1/BARD1 heterodimer modulates Ran-dependent mitotic spindle assembly. Cell 127:539–552

    Article  PubMed  CAS  Google Scholar 

  8. Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP, Gygi SP, Parvin JD (2004) BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 24:8457–8466

    Article  PubMed  CAS  Google Scholar 

  9. Kumaraswamy E, Shiekhattar R (2007) Activation of BRCA1/BRCA2-associated helicase BACH1 is required for timely progression through S phase. Mol Cell Biol 27:6733–6741

    Article  PubMed  CAS  Google Scholar 

  10. Liu Z, Wu J, Yu X (2007) CCDC98 targets BRCA1 to DNA damage sites. Nat Struct Mol Biol 14:716–720

    Article  PubMed  CAS  Google Scholar 

  11. Kim H, Chen J, Yu X (2007) Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316:1202–1205

    Article  PubMed  CAS  Google Scholar 

  12. Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, Livingston DM, Greenberg RA (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316:1198–1202

    Article  PubMed  CAS  Google Scholar 

  13. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, Wahrer DC, Sgroi DC, Lane WS, Haber DA et al (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105:149–160

    Article  PubMed  CAS  Google Scholar 

  14. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, Elledge SJ (2007) Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316:1194–1198

    Article  PubMed  CAS  Google Scholar 

  15. Yarden RI, Brody LC (1999) BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci USA 96:4983–4988

    Article  PubMed  CAS  Google Scholar 

  16. Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F, Shiekhattar R (2000) BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102:257–265

    Article  PubMed  CAS  Google Scholar 

  17. Lou Z, Minter-Dykhouse K, Chen J (2005) BRCA1 participates in DNA decatenation. Nat Struct Mol Biol 12:589–593

    Article  PubMed  CAS  Google Scholar 

  18. Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182

    Article  PubMed  CAS  Google Scholar 

  19. Ashworth A, Lord CJ, Reis-Filho JS (2011) Genetic Interactions in Cancer Progression and Treatment. Cell 145:30–38

    Article  PubMed  CAS  Google Scholar 

  20. Foulkes WD (2008) Inherited susceptibility to common cancers. N Engl J Med 359:2143–2153

    Article  PubMed  CAS  Google Scholar 

  21. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  22. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  PubMed  CAS  Google Scholar 

  23. Joukov V, Chen J, Fox EA, Green JB, Livingston DM (2001) Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proc Natl Acad Sci USA 98:12078–12083

    Article  PubMed  CAS  Google Scholar 

  24. Xia Y, Pao GM, Chen H-W, Verma IM, Hunter T (2003) Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem 278:5255–5263

    Article  PubMed  CAS  Google Scholar 

  25. Mallery DL, Vandenberg CJ, Hiom K (2002) Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J 21:6755–6762

    Article  PubMed  CAS  Google Scholar 

  26. Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T et al (2009) The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462:886–890

    Article  PubMed  CAS  Google Scholar 

  27. Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP (2009) Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462:935–939

    Article  PubMed  CAS  Google Scholar 

  28. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–184

    Article  PubMed  CAS  Google Scholar 

  29. Yu X (2006) BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev 20:1721–1726

    Article  PubMed  CAS  Google Scholar 

  30. Sato K, Hayami R, Wu W, Nishikawa T, Nishikawa H, Okuda Y, Ogata H, Fukuda M, Ohta T (2004) Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. J Biol Chem 279:30919–30922

    Article  PubMed  CAS  Google Scholar 

  31. Wu W, Nishikawa H, Hayami R, Sato K, Honda A, Aratani S, Nakajima T, Fukuda M, Ohta T (2007) BRCA1 ubiquitinates RPB8 in response to DNA damage. Cancer Res 67:951–958

    Article  PubMed  CAS  Google Scholar 

  32. Starita LM, Horwitz AA, Keogh M-C, Ishioka C, Parvin JD, Chiba N (2005) BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J Biol Chem 280:24498–24505

    Article  PubMed  CAS  Google Scholar 

  33. Eakin CM, Maccoss MJ, Finney GL, Klevit RE (2007) Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA 104:5794–5799

    Article  PubMed  CAS  Google Scholar 

  34. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata H, Ohta T (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 276:14537–14540

    Article  PubMed  CAS  Google Scholar 

  35. Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM (2001) Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA 98:5134–5139

    Article  PubMed  CAS  Google Scholar 

  36. Reid LJ, Shakya R, Modi AP, Lokshin M, Cheng J-T, Jasin M, Baer R, Ludwig T (2008) E3 ligase activity of BRCA1 is not essential for mammalian cell viability or homology-directed repair of double-strand DNA breaks. Proc Natl Acad Sci USA 105:20876–20881

    Article  PubMed  CAS  Google Scholar 

  37. Yu X (2003) The BRCT domain is a phospho-protein binding domain. Science 302:639–642

    Article  PubMed  CAS  Google Scholar 

  38. Manke IA, Lowery DM, Nguyen A, Yaffe MB (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302:636–639

    Article  PubMed  CAS  Google Scholar 

  39. Kim H, Huang J, Chen J (2007) CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat Struct Mol Biol 14:710–715

    Article  PubMed  CAS  Google Scholar 

  40. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273:25388–25392

    Article  PubMed  CAS  Google Scholar 

  41. Yun MH, Hiom K (2009) CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459:460–463

    Article  PubMed  CAS  Google Scholar 

  42. Sy SM-H, Huen MSY, Chen J (2009) PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci USA 106:7155–7160

    Article  PubMed  CAS  Google Scholar 

  43. Zhang F, Fan Q, Ren K, Andreassen PR (2009) PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 7:1110–1118

    Article  PubMed  CAS  Google Scholar 

  44. Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL (1997) RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 272:31941–31944

    Article  PubMed  CAS  Google Scholar 

  45. Galkin VE, Esashi F, Yu X, Yang S, West SC, Egelman EH (2005) BRCA2 BRC motifs bind RAD51-DNA filaments. Proc Natl Acad Sci USA 102:8537–8542

    Article  PubMed  CAS  Google Scholar 

  46. Davies OR, Pellegrini L (2007) Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol 14:475–483

    PubMed  Google Scholar 

  47. Esashi F, Galkin VE, Yu X, Egelman EH, West SC (2007) Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat Struct Mol Biol 14:468–474

    Article  PubMed  CAS  Google Scholar 

  48. Jensen RB, Carreira A, Kowalczykowski SC (2010) Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678–683

    Article  PubMed  CAS  Google Scholar 

  49. Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M, Griffith JD, West SC (2010) The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 17:1263–1265

    Article  PubMed  CAS  Google Scholar 

  50. Liu J, Doty T, Gibson B, Heyer W-D (2010) Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 17:1260–1262

    Article  PubMed  CAS  Google Scholar 

  51. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS, Ashworth A (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–1115

    Article  PubMed  CAS  Google Scholar 

  52. D’Andrea AD (2010) Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J Med 362:1909–1919

    Article  PubMed  Google Scholar 

  53. Berchuck A, Heron KA, Carney ME, Lancaster JM, Fraser EG, Vinson VL, Deffenbaugh AM, Miron A, Marks JR, Futreal PA et al (1998) Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res 4:2433–2437

    PubMed  CAS  Google Scholar 

  54. Osorio A, de la Hoya M, Rodríguez-López R, Martínez-Ramírez A, Cazorla A, Granizo JJ, Esteller M, Rivas C, Caldés T, Benítez J (2002) Loss of heterozygosity analysis at the BRCA loci in tumor samples from patients with familial breast cancer. Int J Cancer 99:305–309

    Article  PubMed  CAS  Google Scholar 

  55. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, Mierzwa T, Szwiec M, Wiśniowski R, Siolek M et al (2010) Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 28:375–379

    Article  PubMed  CAS  Google Scholar 

  56. Carey LA (2010) Targeted chemotherapy? Platinum in BRCA1-dysfunctional breast cancer. J Clin Oncol 28:361–363

    Article  PubMed  CAS  Google Scholar 

  57. Chappuis PO, Goffin J, Wong N, Perret C, Ghadirian P, Tonin PN, Foulkes WD (2002) A significant response to neoadjuvant chemotherapy in BRCA1/2 related breast cancer. J Med Genet 39:608–610

    Article  PubMed  CAS  Google Scholar 

  58. Brodie SG, Xu X, Qiao W, Li WM, Cao L, Deng CX (2001) Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20:7514–7523

    Article  PubMed  CAS  Google Scholar 

  59. Tassone P, Tagliaferri P, Perricelli A, Blotta S, Quaresima B, Martelli ML, Goel A, Barbieri V, Costanzo F, Boland CR et al (2003) BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer 88:1285–1291

    Article  PubMed  CAS  Google Scholar 

  60. Lafarge S, Sylvain V, Ferrara M, Bignon YJ (2001) Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene 20:6597–6606

    Article  PubMed  CAS  Google Scholar 

  61. Quinn JE, Kennedy RD, Mullan PB, Gilmore PM, Carty M, Johnston PG, Harkin DP (2003) BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 63:6221–6228

    PubMed  CAS  Google Scholar 

  62. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  63. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  PubMed  CAS  Google Scholar 

  64. Fong P, Boss D, Yap T, Tutt A, Wu P (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134

    Article  PubMed  CAS  Google Scholar 

  65. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244

    Article  PubMed  CAS  Google Scholar 

  66. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251

    Article  PubMed  CAS  Google Scholar 

  67. Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T (2008) Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res 68:2581–2586

    Article  PubMed  CAS  Google Scholar 

  68. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, Karlan BY, Taniguchi T, Swisher EM (2011) Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol 29:3008–3015

    Article  PubMed  CAS  Google Scholar 

  69. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ et al (2008) Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451:1116–1120

    Article  PubMed  CAS  Google Scholar 

  70. Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  Google Scholar 

  71. Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J, Lanchbury JS, Stemke-Hale K, Hennessy BT, Arun BK et al (2011) Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 17:1082–1089

    Article  PubMed  CAS  Google Scholar 

  72. Hilton JL, Geisler JP, Rathe JA, Hattermann-Zogg MA, DeYoung B, Buller RE (2002) Inactivation of BRCA1 and BRCA2 in ovarian cancer. J Natl Cancer Inst 94:1396–1406

    Article  PubMed  CAS  Google Scholar 

  73. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA et al (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92:564–569

    Article  PubMed  CAS  Google Scholar 

  74. Catteau A, Harris WH, Xu CF, Solomon E (1999) Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene 18:1957–1965

    Article  PubMed  CAS  Google Scholar 

  75. Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Narod S, Karlan BY (2000) BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res 60:5329–5333

    PubMed  CAS  Google Scholar 

  76. Geisler JP, Hatterman-Zogg MA, Rathe JA, Buller RE (2002) Frequency of BRCA1 dysfunction in ovarian cancer. J Natl Cancer Inst 94:61–67

    Article  PubMed  CAS  Google Scholar 

  77. Beger C, Pierce LN, Kruger M, Marcusson EG, Robbins JM, Welcsh P, Welch PJ, Welte K, King MC, Barber JR et al (2001) Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc Natl Acad Sci USA 98:130–135

    Article  PubMed  CAS  Google Scholar 

  78. Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin S-F, Milner J, Brown LA, Hsu F, Gilks B et al (2003) EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115:523–535

    Article  PubMed  CAS  Google Scholar 

  79. Wilkerson PM, Dedes KJ, Wetterskog D, MacKay A, Lambros MB, Mansour M, Frankum J, Lord CJ, Natrajan R, Ashworth A et al (2011) Functional characterization of EMSY gene amplification in human cancers. J Pathol 225:29–42

    Article  PubMed  CAS  Google Scholar 

  80. Foulkes WD (2004) BRCA1 functions as a breast stem cell regulator. J Med Genet 41:1–5

    Article  PubMed  CAS  Google Scholar 

  81. Turner N, Tutt A, Ashworth A (2004) Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer 4:814–819

    Article  PubMed  CAS  Google Scholar 

  82. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948

    Article  PubMed  CAS  Google Scholar 

  83. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, Gilmore H, Tung N, Naber SP, Schnitt S et al (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 8:149–163

    Article  PubMed  CAS  Google Scholar 

  84. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat M-L, Gyorki DE, Ward T, Partanen A et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913

    Article  PubMed  CAS  Google Scholar 

  85. Molyneux G, Geyer FC, Magnay F-A, McCarthy A, Kendrick H, Natrajan R, MacKay A, Grigoriadis A, Tutt A, Ashworth A et al (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7:403–417

    Article  PubMed  CAS  Google Scholar 

  86. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A et al (2010) Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol 28:1145–1153

    Article  PubMed  CAS  Google Scholar 

  87. O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, Koo IC, Sherman BM, Bradley C (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364:205–214

    Article  PubMed  Google Scholar 

  88. Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E, Francoeur N, Levine DA, Cannistra SA (2010) Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol 28:3555–3561

    Article  PubMed  CAS  Google Scholar 

  89. Graeser M, McCarthy A, Lord CJ, Savage K, Hills M, Salter J, Orr N, Parton M, Smith IE, Reis-Filho JS et al (2010) A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 16:6159–6168

    Article  PubMed  CAS  Google Scholar 

  90. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Foulkes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shuen, A.Y., Reis-Filho, J.S., Foulkes, W.D. (2013). The Role of BRCA1 and BRCA2 in Anticancer Drug Therapy. In: Panasci, L., Aloyz, R., Alaoui-Jamali, M. (eds) Advances in DNA Repair in Cancer Therapy. Cancer Drug Discovery and Development, vol 72. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4741-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4741-2_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4740-5

  • Online ISBN: 978-1-4614-4741-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics