Skip to main content

Development, Anatomy, and Physiology of the Upper Esophageal Sphincter and Pharyngoesophageal Junction

  • Chapter
  • First Online:
Principles of Deglutition

Abstract

The upper esophageal sphincter (UES) functions to close or to open the esophago-pharyngeal junction as needed. The UES closing muscles include the cervical esophagus, cricopharyngeus (CP), and inferior pharyngeal constrictor, but the primary functional muscle of the UES is the CP. The UES opening muscles include anteriorly the superior and inferior hyoid muscles and posteriorly the stylopharyngeus, palatopharyngeus, and pteropharyngeus. The UES is opened intermittently during various functions by relaxation of its closing muscles, contraction of its opening muscles, and bolus pulsion. The UES closing muscles contain two sets of muscle fibers: an inner layer of slow-twitch fibers and outer layer of fast-twitch fibers. It is hypothesized that these two fiber types serve the two basic functions of the UES closing muscles: slow tone generation and rapid reflex responsiveness. The UES motor and sensory functions are controlled by branches of the glossopharyngeal and vagus nerves. The motor nerve of the CP in animals is the pharyngoesophageal branch of the vagus nerve and may be the recurrent laryngeal nerve in humans. The nucleus ambiguus is the primary motor nucleus of the UES, and the nucleus tractus solitarius is the primary termination site of UES afferents. The UES opens and closes in complex patterns well coordinated with laryngeal movement to prevent aspiration during swallowing, belching, and vomiting. The UES tone increases during various digestive or respiratory tract reflexes to prevent the insufflation of air into the esophagus or the pharyngeal reflux of esophageal contents with possible aspiration. The specific actions of individual muscles of the UES differ among its various functions. The UES is fully functional as early as 33 weeks postmenstrual age although the specific parameters may differ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brownlow H, Whitmore I, Willan P. A quantitative study of the histochemical and morphometric characteristics of the human cricopharyngeus muscle. J Anat. 1989;166:67–75.

    PubMed  CAS  Google Scholar 

  2. Kristamundsdottir F, Mahon M, Froes MM, Cumming WJ. Histomorphometric and histological study of the human cricopharyngeus in health and in motor neuron disease. Neuropathol Appl Neurobiol. 1990;26:461–75.

    Article  Google Scholar 

  3. Bonington A, Mahon M, Whitemore I. A histological and histochemical study of the cricopharyngeus muscle in man. J Anat. 1988;156:27–37.

    PubMed  CAS  Google Scholar 

  4. Mu L, Sanders I. Neuromuscular organization of the human upper esophageal sphincter. Ann Otol Rhinol Laryngol. 2001;107:370–7.

    Google Scholar 

  5. Mu L, Sanders I. Muscle fiber-type distribution pattern in the human cricopharyngeus muscle. Dysphagia. 2002;17:87–96.

    Article  PubMed  Google Scholar 

  6. Mu L, Su H, Wang J, Sanders I. Myosin heavy chain-based fiber types in the adult human cricopharyngeus muscle. Muscle Nerve. 2007;35:637–48.

    Article  PubMed  CAS  Google Scholar 

  7. Mu L, Wang J, Su H, Sanders I. Adult human upper esophageal sphincter contains specialized muscle fibers expressing unusual myosin heavy chain isoforms. J Histochem Cytochem. 2007;55:199–207.

    Article  PubMed  CAS  Google Scholar 

  8. Medda BK, Lang IM, Dodds WJ, Christl M, Kern M, Hogan WJ, Shaker R. Correlation of electrical and contractile activities of the cricopharyngeus muscle in the cat. Am J Physiol. 1997;273:G470–9.

    PubMed  CAS  Google Scholar 

  9. Spiro D, Sonenblick EH. Comparison of the structural basis of the contractile process in heart and skeletal muscle. Circ Res. 1964;15 Suppl 11:14–7.

    PubMed  CAS  Google Scholar 

  10. Asoh R, Goyal RK. Manometry and electromyography of the upper esophageal sphincter in the opossum. Gastroenterology. 1978;74:514–20.

    PubMed  CAS  Google Scholar 

  11. Mu L, Sanders I. Neuromuscular compartments and fiber-type regionalization in the human inferior pharyngeal constrictor muscle. Anat Rec. 2001;264:367–77.

    Article  PubMed  CAS  Google Scholar 

  12. Mu L, Sanders I. Neuromuscular specializations within human pharyngeal constrictor muscles. Ann Otol Rhinol Laryngol. 2007;116:604–17.

    PubMed  Google Scholar 

  13. Meyer GW, Austin RM, Brady CE, Castell DO. Muscle anatomy of the human esophagus. J Clin Gastroenterol. 1986;8:131–4.

    Article  PubMed  CAS  Google Scholar 

  14. Leese G, Hopwood D. Muscle fibre typing in the human pharyngeal constrictors and esophagus: effect of aging. J Anat. 1986;127:77–80.

    CAS  Google Scholar 

  15. Shedlofsky-Deschamps G, Krause WJ, Cutts JH, Hanson S. Histochemistry of the striated musculature in the opossum and human esophagus. J Anat. 1982;134:407–14.

    PubMed  CAS  Google Scholar 

  16. Mascarello F, Rowlerson A, Scapolo PA. The fibre type composition of the striated muscle of the esophagus in ruminants and carnivores. Histochemistry. 1984;80:277–88.

    Article  PubMed  CAS  Google Scholar 

  17. Gray H, Goss CM. Anatomy of the human body. Philadelphia, PA: Lea & Febiger; 1968.

    Google Scholar 

  18. Bubb WJ, Sims MH. Fiber type composition of rostral and caudal portions of the digastric muscle in the dog. Am J Vet Res. 1986;47:1834–41.

    PubMed  CAS  Google Scholar 

  19. Dick TE, Van Lunteren E. Fiber subtype distribution of pharyngeal dilator muscles and diaphragm in the cat. J Appl Physiol. 1990;687:2237–40.

    Google Scholar 

  20. Hisa Y, Malmgren LT, Lyon MJ. Quantitative histochemical studies on the cat infrahyoid muscles. Otolaryngol Head Neck Surg. 1990;103:723–32.

    PubMed  CAS  Google Scholar 

  21. Mu L, Sanders I. The innervation of the human upper esophageal sphincter. Dysphagia. 1996;11:234–8.

    Article  PubMed  CAS  Google Scholar 

  22. Sasaki CT, Sims H, Kim Y-H, Czibulka A. Motor innervation of the human cricopharyngeus muscle. Ann Otol Rhinol Laryngol. 1999;108:1132–9.

    PubMed  CAS  Google Scholar 

  23. Hwang K, Grossman MI, Ivy AC. Nervous control of the cervical portion of the esophagus. Am J Physiol. 1948;154:343–57.

    PubMed  CAS  Google Scholar 

  24. Kobler JB, Datta S, Goyal RK, et al. Innervation of the larynx, pharynx, and upper esophageal sphincter of the rat. J Comp Neurol. 1994;349:129–47.

    Article  PubMed  CAS  Google Scholar 

  25. Lang IM, Medda BK, Shaker R. Functional studies of the innervation of the upper esophageal sphincter. Gastroenterology. 1998;114:A783.

    Article  Google Scholar 

  26. Venker-van Haagen AJ, Hartman W, Wolvekamp WTC. Contributions of the glossopharyngeal nerve and the pharyngeal branch of the vagus nerve to the swallowing process. Am J Vet Res. 1986;47:1300–7.

    PubMed  CAS  Google Scholar 

  27. Levitt MN, Dedo HH, Ogura JH. The cricopharyngeus muscle, an electromyographic study in the dog. Laryngoscope. 1965;75:122–36.

    Article  PubMed  CAS  Google Scholar 

  28. Venker-van Haagen AJ, Hartman W, Van den Brom WE, Wolvekamp WTC. Continuous electromyographic recordings of pharyngeal muscle activity in normal and previously denervated muscles in dogs. Am J Vet Res. 1989;50:1725–8.

    PubMed  CAS  Google Scholar 

  29. Fukunaga Y, Higashino M, Osugi H, Tokuhara T, Kinoshita H. Function of the upper esophageal sphincter after denervation of recurrent laryngeal nerves and intramural nerves of the cervical esophagus in dogs. J Jap Surg Soc. 1994;95:643–54.

    CAS  Google Scholar 

  30. Hwang K, Grossman MI. A note on the innervation of the cervical portion of the human esophagus. Gastroenterology. 1953;25:375–7.

    PubMed  CAS  Google Scholar 

  31. Hammond CS, Davenport PW, Hutchison A, Otto RA. Motor innervation of the cricopharyngeus muscle by the recurrent laryngeal nerve. J Appl Physiol. 1997;83:89–94.

    PubMed  CAS  Google Scholar 

  32. Brok HAJ, Copper MP, Stroeve RJ, Ongerboer BW, Venker-van Haagen AJ, Schouwenburg PF. Evidence for recurrent laryngeal nerve contribution in motor innervation of the human cricopharyngeal muscle. Laryngoscope. 1999;109:705–8.

    Article  PubMed  CAS  Google Scholar 

  33. Wilson JA, Pryde A, White A, Maran AGD. Swallowing performance in patients with vocal fold motion impairment. Dysphagia. 1995;10:149–54.

    Article  PubMed  CAS  Google Scholar 

  34. Halum SL, Shemirani N, Merati AL, Jaradeh S, Toothill RJ. Electromyography findings of the cricopharyngeus in association with ipsilateral pharyngeal and laryngeal muscles. Ann Otol Rhinol Laryngol. 2006;115:312–6.

    PubMed  Google Scholar 

  35. Miyazaki J, Shin T, Murata Y, Masuko S. Pharyngeal branch of the vagus nerve carries intraepithelial afferent fibers in the cat pharynx: an elucidation of the origin and central and peripheral distribution of these components. Otolaryngol Head Neck Surg. 1999;120:905–13.

    Article  PubMed  CAS  Google Scholar 

  36. Maeyama T, Miyazaki J, Tsuda K, Shin T. Distribution and origin of the intraepithelial nerve fibers in the feline pharyngeal mucosa. Acta Otolaryngol Suppl. 1998;539:87–90.

    PubMed  CAS  Google Scholar 

  37. Tanaka Y, Yoshida Y, Hirano M, Morimoto M, Kanaseki T. Intramucosal distribution of the glossopharyngeal sensory fibers of cats. Brain Res Bull. 1987;19:115–27.

    Article  PubMed  CAS  Google Scholar 

  38. Yoshida Y, Tanaka Y, Hirano M, Nakashima T. Sensory innervation of the pharynx and larynx. Am J Med. 2000;108(Suppl):51S–61.

    Article  PubMed  Google Scholar 

  39. Wank M, Neuhuber WL. Local differences in vagal afferent innervation of the rat esophagus are reflected by neurochemical differences at the level of the sensory ganglia and by different brainstem projections. J Comp Neurol. 2001;435:41–59.

    Article  PubMed  CAS  Google Scholar 

  40. Lang IM, Medda BK, Lamba R, Shaker R. Characterization and quantification of new aspects of the esophago-LES and -UES reflexes. Gastroentero­logy. 2011;140:T345.

    Google Scholar 

  41. Lang IM, Medda BK, Shaker R. Mechanisms of reflexes induced by esophageal distension. Am J Physiol. 2001;281:G1246–63.

    CAS  Google Scholar 

  42. Medda BK, Lang IM, Layman R, Dodds WJ, Hogan WJ, Shaker R. Characterization and quantification of a pharyngo-UES contractile reflex in cats. Am J Physiol. 1993;265:G963–72.

    Google Scholar 

  43. Nagai T. The occurrence and ultrastructure of a mechanoreceptor in the human cricopharyngeus muscle. Eur Arch Otorhinolaryngol. 1991;248:144–6.

    Article  PubMed  CAS  Google Scholar 

  44. Muntener M, Gottschall J, Neuhuber W, Mysicka A, Zenker W. The ansa cervicalis and the infrahyoid muscles of the rat. I. Anatomy; distribution, number and diameter of fiber types; motor units. Anat Embryol. 1980;159:49–57.

    Article  PubMed  CAS  Google Scholar 

  45. Maier A. Occurrence and distribution of muscle spindles in masticatory and suprahyoid muscles of the rat. Am J Anat. 1979;155:483–505.

    Article  PubMed  CAS  Google Scholar 

  46. Van Willigen JD, Morimoto T, Broekhuijsen ML, Bijl GK, Inoue T. An electromyographic study of whether the digastric muscles are controlled by jaw-closing proprioceptors in man. Arch Oral Biol. 1993;38:497–505.

    Article  PubMed  Google Scholar 

  47. Liss M. Muscle spindles in human levator velo palatini and palatoglossus muscles. J Speech Hear Res. 1990;33:736–46.

    PubMed  CAS  Google Scholar 

  48. Tadaki N, Hisa Y, Uno T, Koike S, Okamura H, Ibata Y. Neurotransmitters for the canine inferior pharyngeal constrictor muscle. Otolaryngol Head Neck Surg. 1995;113:755–9.

    Article  PubMed  CAS  Google Scholar 

  49. Terenghi G, Polak JM, Rodrigo J, Mulderry PL, Bloom SR. Calcitonin gene-related peptide-immunoreactive nerves in the tongue, epiglottis and pharynx of the rat: occurrence, distribution and origin. Brain Res. 1986;365:1–14.

    Article  PubMed  CAS  Google Scholar 

  50. Rodrigo J, Polak JM, Fernandez L, Ghatei MP, Mulderry P, Bloom SR. Calcotinin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat, and monkey esophagus. Gastroenterology. 1985;88:444–51.

    PubMed  CAS  Google Scholar 

  51. Lawn AM. The localization in the nucleus ambiguus of the rabbit of the cells of origin of motor nerve fibers in the glossopharyngeal nerve and various branches of the vagus nerve by means of retrograde degeneration. J Comp Neurol. 1966;127:293–306.

    Article  PubMed  CAS  Google Scholar 

  52. Kitamura S, Ogata K, Nishiguchi T, Nagase Y, Shigenaga Y. Localization of the motoneurons supplying the rabbit pharyngeal constrictor muscles and the peripheral course of their axons: a study using retrograde HRP or fluorescent labeling technique. Anat Rec. 1989;229:399–406.

    Article  Google Scholar 

  53. Bieger D, Hopkins DA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol. 1987;262:546–62.

    Article  PubMed  CAS  Google Scholar 

  54. Holstege G, Graveland G, Bijker-Biemond C, Schuddeboom I. Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. An HRP autoradiographic tracing study. Brain Behav Evol. 1983;23:47–62.

    Article  PubMed  CAS  Google Scholar 

  55. Collman PI, Tremblay L, Diamant N. The central efferent supply to the esophagus and lower esophageal sphincter of the cat. Gastroenterology. 1993;104:1430–8.

    PubMed  CAS  Google Scholar 

  56. Lawn AM. The localization by means of electrical stimulation of the origin and path in the medulla oblongata of the motor nerve fibers of the rabbit esophagus. J Physiol. 1964;174:232–44.

    PubMed  CAS  Google Scholar 

  57. Doty RW, Bosma JF. An electromyographic analysis of reflex deglutition. J Neurophysiol. 1956;19:44–60.

    PubMed  CAS  Google Scholar 

  58. Lang IM, Medda BK, Layman RD, Hogan WJ, Shaker R. Control of upper esophageal sphincter by the nucleus ambiguus. Gastroenterology. 1994;106:A529.

    Google Scholar 

  59. Altschuler SM, Bao X, Miselis RR. Dendritic architecture of nucleus ambiguus motoneurons projecting to the upper alimentary tract in the rat. J Comp Neurol. 1991;309:402–14.

    Article  PubMed  CAS  Google Scholar 

  60. Hayakawa T, Yajima T, Zyo K. Ultrastructural characterization of pharyngeal and esophageal motoneurons in the nucleus ambiguus of the rat. J Comp Neurol. 1996;370:135–46.

    Article  PubMed  CAS  Google Scholar 

  61. Grelot L, Barillot JC, Bianchi AL. Pharyngeal motoneurons: respiratory-related activity and response to laryngeal afferents in the decerebrate cat. Exp Brain Res. 1989;78:336–44.

    PubMed  CAS  Google Scholar 

  62. Lang IM, Dean C, Medda BK, Aslam M, Shaker R. Differential activation of medullary vagal nuclei during different phases of swallowing in the cat. Brain Res. 2004;1014:145–63.

    Article  PubMed  CAS  Google Scholar 

  63. Lang IM, Medda BK, Shaker R. Differential activation of medullary vagal nuclei caused by stimulation of different esophageal mechanoreceptors. Brain Res. 2011;1368:119–33.

    Article  PubMed  CAS  Google Scholar 

  64. Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR. Visecerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary tract and spinal trigeminal tracts. J Comp Neurol. 1989;283:248–68.

    Article  PubMed  CAS  Google Scholar 

  65. Brousard DL, Lyon RB, Wiedner EB, Altschuler SM. Solitarial premotor neuron projections to the rat esophagus and pharynx: implications for control of swallowing. Gastroenterology. 1998;114:1268–75.

    Article  Google Scholar 

  66. Boa X, Wiedner EB, Altschuler SM. Transynaptic localization of pharyngeal premotor neurons in rat. Brain Res. 1995;696:246–9.

    Article  Google Scholar 

  67. Hayakawa T, Takanaga A, Maeda S, Seki M, Yajima Y. Subnuclear distribution of afferents from the oral, pharyngeal, and laryngeal regions in the nucleus tractus solitarii of the rat: a study using transganglionic transport of cholera toxin. Neurosci Res. 2001;39:221–32.

    Article  PubMed  CAS  Google Scholar 

  68. Collman PI, Tremblay L, Diamant NE. The distribution of spinal and vagal sensory n neurons that innervate the esophagus of the cat. Gastroenterology. 1992;103:817–22.

    PubMed  CAS  Google Scholar 

  69. Neuhuber WL, Kressel M, Stark A, Berthoud HR. Vagal efferent and afferent innervation of the rat esophagus as demonstrated by anterograde DiI and DiA tracing: focus on myenteric ganglia. (J Auton Nerv Syst) JANS. 1998;70:92–102.

    Article  CAS  Google Scholar 

  70. Qin C, Chandler MJ, Jou CI, Foreman RD. Responses and afferent pathways of C1-C2 spinal neurons to cervical and thoracic esophageal stimulation in rats. J Neurophysiol. 2004;91:2227–35.

    Article  PubMed  Google Scholar 

  71. Barrett RT, Bao X, Miselis RR, Altschuler SM. Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology. 1994;107:728–37.

    Article  PubMed  CAS  Google Scholar 

  72. Lang IM, Medda BK, Shaker R. Differential activation of pontomedullary nuclei by acid perfusion of different regions of the esophagus. Brain Res. 2010;1352:94–107.

    Article  PubMed  CAS  Google Scholar 

  73. Castell JA, Dalton CB, Castell DO. Pharyngeal and upper esophageal sphincter manometry in humans. Am J Physiol. 1990;258:G173–8.

    PubMed  CAS  Google Scholar 

  74. Kahrilas PJ, Dodds WJ, Dent J, Haebrle B, Hogan WJ, Arndorfer RC. Effect of sleep, spontaneous gastroesophageal reflux, and a meal on upper esophageal sphincter pressure in normal human volunteers. Gastroenterology. 1987;92:466–71.

    PubMed  CAS  Google Scholar 

  75. Jacob P, Kahrilas PJ, Herzon G, McLaughlin B. Determinants of upper esophageal sphincter pressure in dogs. Am J Physiol. 1990;259:G245–51.

    PubMed  CAS  Google Scholar 

  76. Cook IJ, Dent J, Shannon S, Collins SM. Measurement of upper esophageal sphincter pressure. Effect of acute emotional stress. Gastroenterology. 1987;93:526–32.

    PubMed  CAS  Google Scholar 

  77. Cook IJ, Dent J, Collins SM. Upper esophageal sphincter tone and reactivity to stress in patients with a history of globus sensation. Dig Dis Sci. 1989;34:672–6.

    Article  PubMed  CAS  Google Scholar 

  78. Lang IM, Dantas RO, Cook IJ, Dodds WJ. Videoradiographic, manometric and electromyographic assessment of upper esophageal sphincter. Am J Physiol. 1991;260:G911–9.

    PubMed  CAS  Google Scholar 

  79. Goyal RK, Martin SB, Shapiro J, Spechler SJ. The role of cricopharyngeus muscle in pharyngoesophageal disorders. Dysphagia. 1993;8:253–8.

    Article  Google Scholar 

  80. Cook IJ, Dodds WJ, Dantas RO, Massey B, Kern M, Lang IM, Brasseur J, Hogan WJ. Opening mechanisms of the upper esophageal sphincter. Am J Physiol. 1989;257:G748–59.

    PubMed  CAS  Google Scholar 

  81. Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology. 1988;95:52–62.

    PubMed  CAS  Google Scholar 

  82. Lang IM, Sarna SK, Dodds WJ. The pharyngeal, esophageal, and gastric responses associated with vomiting. Am J Physiol. 1993;265:G963–72.

    PubMed  CAS  Google Scholar 

  83. Lang IM, Dana N, Medda BK, Shaker R. Mechanisms of airway protection during retching, vomiting, and swallowing. Am J Physiol. 2002;283:G529–36.

    CAS  Google Scholar 

  84. Kahrilas PJ, Dodds WJ, Dent J, Wyman JB, Hogan WJ, Arndorfer RC. Upper esophageal function during belching. Gastroenterology. 1986;91:133–40.

    PubMed  CAS  Google Scholar 

  85. Shaker R, Ren J, Kern M, Dodds WJ, Hogan WJ, Li Q. Mechanisms of airway protection and upper esophageal sphincter opening during belching. Am J Physiol. 1992;262:G621–8.

    PubMed  CAS  Google Scholar 

  86. Lang IM, Dana N, Shaker R. The laryngeal, pharyngeal, and hyoid responses during swallowing, belching and vomiting. Gastroenterology. 2001;120:A122.

    Google Scholar 

  87. Freiman JM, El-Sharkaway TY, Diamant NE. Effect of bilateral vagosympathetic nerve blockade on response of the dog upper esophageal sphincter (UES) to intraesophageal distention and acid. Gastroenterology. 1981;81:78–84.

    PubMed  CAS  Google Scholar 

  88. Monges H, Salducci J, Naudy B. The upper esophageal sphincter during vomiting, eructation, and distension of the cardia: an electromyographic study in the unanesthetized dog. In: Duthie HL, editor. Gastrointestinal motility in health and disease. Lancaster: MTP Press; 1978. p. 575–83.

    Google Scholar 

  89. Hesse O. Zur Kenntnes des Brechaktes. Nach Roentgenversuchen an Hunden. Pflugers Arch Gesamte Physiol. 1913;152:1–22.

    Article  Google Scholar 

  90. Shaker R, Ren J, Xie P, Lang IM, bardan E, Sui Z. Characterization of the pharyngo-UES contractile reflex in humans. Am J Physiol. 1997;273:G854–8.

    PubMed  CAS  Google Scholar 

  91. Szczesniak MM, Fuentealba SE, Burnett A, Cook IJ. Differential relaxation and contractile responses of the human upper esophageal sphincter mediated by interplay of mucosal and deep mechanorecptor activation. Am J Physiol. 2008;294:G982–8.

    CAS  Google Scholar 

  92. Enzmann DR, Harell GS, Zboralske FF. Upper esophageal responses to intraluminal distension in man. Gastroenterology. 1977;72:1292–8.

    PubMed  CAS  Google Scholar 

  93. Vakil NB, Kahrilas PJ, Dodds WJ, Vanagunas A. Absence of an upper esophageal sphincter response to acid reflux. Am J Gastroenterol. 1989;84:606–10.

    PubMed  CAS  Google Scholar 

  94. Gerhardt DC, Shuck TJ, Bordeaux RA, Winship DH. Human upper esophageal sphincter response to volume, osmotic and acid stimuli. Gastroenterology. 1978;75:268–74.

    PubMed  CAS  Google Scholar 

  95. Pandolfino JE, Ghosh SK, Zhang Q, Han A, Kahrilas PJ. Upper sphincter function during transient lower oesophageal sphincter relaxation (tLOSR); it is mainly about microburps. Neurogastroenterol Motil. 2007;19(3):203–10.

    Article  PubMed  CAS  Google Scholar 

  96. Lang IM, Medda BK, Shaker R. Mechanism of the ventilatory cycle fluctuations in UES tone. Gastroenterology. 2000;118:A133.

    Article  Google Scholar 

  97. Perera L, Kern M, Hofmann C, Tatro L, Chai K, Kuribayashi S, Lawal A, Shaker R. Manometric evidence for a phonation-induced UES contractile reflex. Am J Physiol. 2008;294:G885–91.

    CAS  Google Scholar 

  98. Jadcherla SR, Duong HQ, Hofmann C, Hofmann R, Shaker R. Characteristics of upper esophageal sphincter and oesophageal body during maturation in healthy human neonates compared with adults. Neurogastroenterol Motil. 2005;17:663–70.

    Article  PubMed  CAS  Google Scholar 

  99. Jadcherla SR, Duong HQ, Hoffman RG, Shaker R. Esophageal body and upper esophageal sphincter motor responses to esophageal provocation during maturation in preterm newborns. J Pediatr. 2003;143:31–8.

    Article  PubMed  Google Scholar 

  100. Jadcherla SR, Gupta A, Stoner E, Fermande S, Shaker R. Pharyngeal swallowing: defining pharyngeal and upper esophageal sphincter relationships in human neonates. J Pediatr. 2007;151:597–603.

    Article  PubMed  Google Scholar 

  101. Jadcherla SR, Hoffan RG, Shaker R. Effect of maturation of the magnitude of mechanosensitive and chemosensitive reflexes in the premature human esophagus. J Pediatr. 2006;147:77–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan M. Lang DVM, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lang, I.M. (2013). Development, Anatomy, and Physiology of the Upper Esophageal Sphincter and Pharyngoesophageal Junction. In: Shaker, R., Belafsky, P., Postma, G., Easterling, C. (eds) Principles of Deglutition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3794-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3794-9_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3793-2

  • Online ISBN: 978-1-4614-3794-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics