Skip to main content

Quantum Computational Complexity

  • Reference work entry
Book cover Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

The Quantum Circuit Model

Polynomial‐Time Quantum Computations

Quantum Proofs

Quantum Interactive Proof Systems

Other Selected Notions in Quantum Complexity

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Quantum circuit:

A quantum circuit is an acyclic network of quantum gates connected by wires: the gates represent quantum operations and the wires represent the qubits on which these operations are performed. The quantum circuit model is the most commonly studied model of quantum computation.

Quantum complexity class:

A quantum complexity class is a collection of computational problems that are solvable by a chosen quantum computational model that obeys certain resource constraints. For example, BQP is the quantum complexity class of all decision problems that can be solved in polynomial time by a quantum computer.

Quantum proof:

A quantum proof is a quantum state that plays the role of a witness or certificate to a quantum computer that runs a verification procedure. The quantum complexity class QMA is defined by this notion: it includes all decision problems whose yes‐instances are efficiently verifiable by means of quantum proofs.

Quantum interactive proof system:

A quantum interactive proof system is an interaction between a verifier and one or more provers, involving the processing and exchange of quantum information, whereby the provers attempt to convince the verifier of the answer to some computational problem.

Bibliography

  1. Aaronson S (2002) Quantum lower bound for the collision problem. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing. ACM Press, New York

    Google Scholar 

  2. Aaronson S (2005) Limitations of quantum advice and one-way communication. Theory Comput 1:1–28

    Article  MathSciNet  Google Scholar 

  3. Aaronson S (2006) QMA/qpoly is contained in PSPACE/poly: de-Merlinizing quantum protocols. In: Proceedings of the 21st Annual IEEE Conference on Computational Complexity. IEEE Ceomputer Society Press, Los Alamitos pp 261–273

    Google Scholar 

  4. Aaronson S, Kuperberg G (2007) Quantum versus classical proofs and advice. Theory Comput 3:129–157

    Article  MathSciNet  Google Scholar 

  5. Aaronson S, Shi Y (2004) Quantum lower bounds for the collision and the element distinctness problems. J ACM 51(4):595–605

    Article  MathSciNet  MATH  Google Scholar 

  6. Adleman L (1978) Two theorems on random polynomial time. In: Proceeding of the 19th Annual IEEE Symposium on Foundations of Computer Science. IEEE Ceomputer Society Press, Los Alamitospp 75–83

    Google Scholar 

  7. Adleman L, DeMarrais J, Huang M (1997) Quantum computability. SIAM J Comput 26(5):1524–1540

    Article  MathSciNet  MATH  Google Scholar 

  8. Aharonov D, Naveh T (2002) Quantum NP – a survey. Available as arXiv.org e-Print quant-ph/0210077

    Google Scholar 

  9. Aharonov D, Kitaev A, Nisan N (1998) Quantum circuits with mixed states. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing. ACM Press, New York, pp 20–30

    Google Scholar 

  10. Aharonov D, Gottesman D, Irani S, Kempe J (2007) The power of quantum systems on a line. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science. IEEE Ceomputer Society Press, Los Alamitospp 373–383

    Google Scholar 

  11. Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S, Regev O (2007) Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J Comput 37(1):166–194

    Article  MathSciNet  MATH  Google Scholar 

  12. Allender E, Ogihara M (1996) Relationships among PL, #L, and the determinant. RAIRO – Theor Inf Appl 30:1–21

    MathSciNet  MATH  Google Scholar 

  13. Arora S, Barak B (2006) Complexity Theory: A Modern Approach. Web draft available at http://www.cs.princeton.edu/theory/complexity/

  14. Arora S, Safra S (1998) Probabilistic checking of proofs: a new characterization of NP. J ACM 45(1):70–122

    Article  MathSciNet  MATH  Google Scholar 

  15. Arora S, Lund C, Motwani R, Sudan M, Szegedy M (1998) Proof verification and the hardness of approximation problems. J ACM 45(3):501–555

    Article  MathSciNet  MATH  Google Scholar 

  16. Aroya A-B, Shma A-T (2007) Quantum expanders and the quantum entropy difference problem. Available as arXiv.org e-print quant-ph/0702129

    Google Scholar 

  17. Babai L (1985) Trading group theory for randomness. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing.ACM Press, New York pp 421–429

    Google Scholar 

  18. Babai L (1992) Bounded round interactive proofs in finite groups. SIAM J Discret Math 5(1):88–111

    Article  MathSciNet  MATH  Google Scholar 

  19. Babai L, Moran S (1988) Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. J Comput Syst Sci 36(2):254–276

    Article  MathSciNet  MATH  Google Scholar 

  20. Babai L, Szemerédi E (1984) On the complexity of matrix group problems I. In: Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science. IEEE Ceomputer Society Press, Los Alamitos pp 229–240

    Google Scholar 

  21. Babai L, Fortnow L, Lund C (1991) Non‐deterministic exponential time has two‐prover interactive protocols. Comput Complex 1(1):3–40

    Article  MathSciNet  MATH  Google Scholar 

  22. Beigel R, Reingold N, Spielman D (1995) PP is closed under intersection. J Comput Syst Sci 50(2):191–202

    Article  MathSciNet  MATH  Google Scholar 

  23. Beigi S, Shor P (2007) On the complexity of computing zero-error and Holevo capacity of quantum channels. Available as arXiv.org e-Print 0709.2090

    Google Scholar 

  24. Bell J (1964) On the Einstein‐Podolsky‐Rosen paradox. Phys 1(3):195–200

    Google Scholar 

  25. Bellare M, Goldreich O, Sudan M (1998) Free bits, PCPs, and non‐approximability —towards tight results. SIAM J Comput 27(3):804–915

    Article  MathSciNet  MATH  Google Scholar 

  26. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532

    Article  MATH  Google Scholar 

  27. Bennett CH, Bernstein E, Brassard G, Vazirani U (1997) Strengths and weaknesses of quantum computing. SIAM J Comput 26(5):1510–1523

    Article  MathSciNet  MATH  Google Scholar 

  28. Bera D, Green F, Homer S (2007) Small depth quantum circuits. ACM SIGACT News 38(2):35–50

    Article  Google Scholar 

  29. Bernstein E, Vazirani U (1993) Quantum complexity theory (preliminary abstract). In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing. ACM Press, New York pp 11–20

    Google Scholar 

  30. Bernstein E, Vazirani U (1997) Quantum complexity theory. SIAM J Comput 26(5):1411–1473

    Article  MathSciNet  MATH  Google Scholar 

  31. Borodin A (1977) On relating time and space to size and depth. SIAM J Comput 6:733–744

    Article  MathSciNet  MATH  Google Scholar 

  32. Borodin A, Cook S, Pippenger N (1983) Parallel computation for well‐endowed rings and space‐bounded probabilistic machines. Inf Control 58:113–136

    Article  MathSciNet  MATH  Google Scholar 

  33. Brassard G (2003) Quantum communication complexity. Found Phys 33(11):1593–1616

    Article  MathSciNet  MATH  Google Scholar 

  34. Cleve R (2000) An introduction to quantum complexity theory. In: Macchiavello C, Palma GM, Zeilinger A (eds) Collected Papers on Quantum Computation and Quantum Information Theory. World Scientific. Singapore pp 103–127

    Google Scholar 

  35. Cleve R, Watrous J (2000) Fast parallel circuits for the quantum Fourier transform. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science. pp 526–536

    Google Scholar 

  36. Cleve R, Høyer P, Toner B, Watrous J (2004) Consequences and limits of nonlocal strategies. In: Proceedings of the 19th Annual IEEE Conference on Computational Complexity. pp 236–249

    Google Scholar 

  37. Cleve R, Slofstra W, Unger F, Upadhyay S (2007) Perfect parallel repetition theorem for quantum XOR proof systems. In: Proceedings of the 22nd Annual IEEE Conference on Computational Complexity. pp 109–114

    Google Scholar 

  38. Cook S (1972) The complexity of theorem proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing. ACM Press, New York pp 151–158

    Google Scholar 

  39. de Wolf R (2002) Quantum communication and complexity. Theor Comput Sci 287(1):337–353

    Article  MATH  Google Scholar 

  40. Deutsch D (1985) Quantum theory, the Church–Turing principle and the universal quantum computer. Proc Roy Soc Lond A 400:97–117

    Article  MathSciNet  MATH  Google Scholar 

  41. Deutsch D (1989) Quantum computational networks. Proc Roy Soc Lond A 425:73–90

    Article  MathSciNet  MATH  Google Scholar 

  42. Dinur I (2007) The PCP theorem by gap amplification. J ACM 54(3)

    Article  MathSciNet  Google Scholar 

  43. Du D-Z, Ko K-I (2000) Theory of Computational Complexity. Wiley, New York

    MATH  Google Scholar 

  44. Even S, Selman A, Yacobi Y (1984) The complexity of promise problems with applications to public‐key cryptography. Inf Control 61:159–173

    Article  MathSciNet  MATH  Google Scholar 

  45. Feige U, Kilian J (1997) Making games short. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing. ACM Press, New York pp 506–516

    Google Scholar 

  46. Feige U, Lovász L (1992) Two‐prover one-round proof systems: their power and their problems. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing.ACM Press, New York pp 733–744

    Google Scholar 

  47. Fenner S, Fortnow L, Kurtz S (1994) Gap‐definable counting classes. J Comput Syst Sci 48:116–148

    Article  MathSciNet  MATH  Google Scholar 

  48. Fenner S, Green F Homer S, Zhang Y (2005) Bounds on the power of constant‐depth quantum circuits. In: Proceedings of the 15th International Symposium on Fundamentals of Computation Theory. Lect Notes Comput Sci 3623:44–55

    Article  Google Scholar 

  49. Feynman R (1983) Simulating physics with computers. Int J Theor Phys 21(6/7):467–488

    MathSciNet  Google Scholar 

  50. Fortnow L (1997) Counting complexity. In: Hemaspaandra L, Selman A (eds) Complexity Theory Retrospective II. Springer, New York pp 81–107

    Chapter  Google Scholar 

  51. Fortnow L, Rogers J (1999) Complexity limitations on quantum computation. J Comput Syst Sci 59(2):240–252

    Article  MathSciNet  MATH  Google Scholar 

  52. Goldreich O (2005) On promise problems (a survey in memory of Shimon Even [1935–2004]). Electronic Colloquium on Computational Complexity; Report TR05-018

    Google Scholar 

  53. Goldreich O, Vadhan S (1999) Comparing entropies in statistical zero‐knowledge with applications to the structure of SZK. In: Proceedings of the 14th Annual IEEE Conference on Computational Complexity. pp 54–73

    Google Scholar 

  54. Goldwasser S, Sipser M (1989) Private coins versus public coins in interactive proof systems. In: Micali S (ed) Randomness and Computation, vol 5 of Advances in Computing Research. JAI Press, Greenwich, Conn pp 73–90

    Google Scholar 

  55. Goldwasser S, Micali S, Rackoff C (1985) The knowledge complexity of interactive proof systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing. ACM Press, New York pp 291–304

    Google Scholar 

  56. Goldwasser S, Micali S, Rackoff C (1989) The knowledge complexity of interactive proof systems. SIAM J Comput 18(1):186–208

    Article  MathSciNet  MATH  Google Scholar 

  57. Gutoski G, Watrous J (2007) Toward a general theory of quantum games. In: Proceedings of the 39th ACM Symposium on Theory of Computing. ACM Press, New York pp 565–574

    Google Scholar 

  58. Håstad J (2001) Some optimal inapproximability results. J ACM 48(4):798–859

    Google Scholar 

  59. Janzing D, Wocjan P, Beth T (2005) Non‐identity‐check is QMA-complete. Int J Quantum Inf 3(2):463–473

    Article  MATH  Google Scholar 

  60. Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computing. Oxford University Press, Oxford

    MATH  Google Scholar 

  61. Kempe J, Kitaev A, Regev O (2006) The complexity of the local Hamiltonian problem. SIAM J Comput 35(5):1070–1097

    Article  MathSciNet  MATH  Google Scholar 

  62. Kempe J, Kobayashi H, Matsumoto K, Toner B, Vidick T (2007) Entangled games are hard to approximate. Proceedings ot the 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos 2008

    Google Scholar 

  63. Kempe J, Regev O, Toner B (2007) The unique games conjecture with entangled provers is false. Proceedings ot the 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos 2008

    Google Scholar 

  64. Kitaev A (1997) Quantum computations: algorithms and error correction. Russ Math Surv 52(6):1191–1249

    Article  MathSciNet  MATH  Google Scholar 

  65. Kitaev A (1999) Quantum NP. Talk at AQIP'99: Second Workshop on Algorithms in Quantum Information Processing. DePaul University, Chicago

    Google Scholar 

  66. Kitaev A, Watrous J (2000) Parallelization, amplification, and exponential time simulation of quantum interactive proof system. In: Proceedings of the 32nd ACM Symposium on Theory of Computing. ACM Press, New York pp 608–617

    Google Scholar 

  67. Kitaev A, Shen A, Vyalyi M (2002) Classical and Quantum Computation. Graduate Studies in Mathematics, vol 47. American Mathematical Society, Providence

    Google Scholar 

  68. Knill E (1995) Approximation by quantum circuits. Technical Report LAUR-95-2225, Los Alamos National Laboratory. Available as arXiv.org e-Print quant-ph/9508006

    Google Scholar 

  69. Knill E (1996) Quantum randomness and nondeterminism. Technical Report LAUR-96-2186, Los Alamos National Laboratory. Available as arXiv.org e-Print quant-ph/9610012

    Google Scholar 

  70. Kobayashi H, Matsumoto K (2003) Quantum multi‐prover interactive proof systems with limited prior entanglement. J Comput Syst Sci 66(3):429–450

    Article  MathSciNet  MATH  Google Scholar 

  71. Kobayashi H, Matsumoto K, Yamakami T (2003) Quantum Merlin–Arthur proof systems: Are multiple Merlins more helpful to Arthur? In: Proceedings of the 14th Annual International Symposium on Algorithms and Computation. Lecture Notes in Computer Science, vol 2906. Springer, Berlin

    Google Scholar 

  72. Levin L (1973) Universal search problems. Probl Inf Transm 9(3):265–266 (English translation)

    Google Scholar 

  73. Liu Y-K (2006) Consistency of local density matrices is QMA-complete. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer, Berlin; Lect Notes Comput Sci 4110:438–449

    Google Scholar 

  74. Lloyd S (2000) Ultimate physical limits to computation. Nature 406:1047–1054

    Article  Google Scholar 

  75. Lund C, Fortnow L, Karloff H, Nisan N (1992) Algebraic methods for interactive proof systems. J ACM 39(4):859–868

    Article  MathSciNet  MATH  Google Scholar 

  76. Marriott C, Watrous J (2005) Quantum Arthur‐Merlin games. Comput Complex 14(2):122–152

    Article  MathSciNet  Google Scholar 

  77. Moore C, Nilsson M (2002) Parallel quantum computation and quantum codes. SIAM J Comput 31(3):799–815

    Article  MathSciNet  Google Scholar 

  78. Moore G (1965) Cramming more components onto integrated circuits. Electron 38(8):82–85

    Google Scholar 

  79. Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambride

    MATH  Google Scholar 

  80. Nishimura H, Yamakami T (2004) Polynomial time quantum computation with advice. Inf Process Lett 90(4):195–204

    Article  MathSciNet  MATH  Google Scholar 

  81. Oliveira R, Terhal B (2005) The complexity of quantum spin systems on a two‐dimensional square lattice. Available as arXiv.org e-Print quant-ph/0504050

    Google Scholar 

  82. Papadimitriou C (1994) Computational Complexity. Addison‐Wesley, Readig, Mass

    MATH  Google Scholar 

  83. Raz R (2005) Quantum information and the PCP theorem. In: 46th Annual IEEE Symposium on Foundations of Computer Science. pp 459–468

    Google Scholar 

  84. Rosgen B (2008) Distinguishing short quantum computations. Proceedings of the 25th Annual Symposium on theoretical Aspects of Computer Science, IBFI, Schloss Dagstuhl, pp 597–608

    Google Scholar 

  85. Rosgen B, Watrous J (2005) On the hardness of distinguishing mixed-state quantum computations. In: Proceedings of the 20th Annual Conference on Computational. pp 344–354

    Google Scholar 

  86. Sahai A, Vadhan S (2003) A complete promise problem for statistical zero‐knowledge. J ACM 50(2):196–249

    Article  MathSciNet  Google Scholar 

  87. Shamir A (1992) IP \( { = } \) PSPACE. J ACM 39(4):869–877

    Article  MathSciNet  MATH  Google Scholar 

  88. Shor P (1994) Algorithms for quantum computation: discrete logarithms ande factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science. pp 124–134

    Google Scholar 

  89. Shor P (1997) Polynomial‐time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26(5):1484–1509

    Article  MathSciNet  MATH  Google Scholar 

  90. Stinespring WF (1955) Positive functions on C -algebras. Proc Am Math Soc 6(2):211–216

    MathSciNet  MATH  Google Scholar 

  91. Toda S (1991) PP is as hard as the polynomial‐time hierarchy. SIAM J Comput 20(5):865–887

    Article  MathSciNet  MATH  Google Scholar 

  92. Toffoli T (1980) Reversible computing. Technical Report MIT/LCS/TM-151, Laboratory for Computer Science, Massachusetts Institute of Technology

    Google Scholar 

  93. Vadhan S (2007) The complexity of zero knowledge. In: 27th International Conference on Foundations of Software Technology and Theoretical Computer Science. Lect Notes Comput Sci 4855:52–70

    Article  MathSciNet  Google Scholar 

  94. Valiant L (1979) The complexity of computing the permanent. Theor Comput Sci 8:189–201

    Article  MathSciNet  MATH  Google Scholar 

  95. Watrous J (1999) Space‐bounded quantum complexity. J Comput Syst Sci 59(2):281–326

    Article  MathSciNet  MATH  Google Scholar 

  96. Watrous J (2000) Succinct quantum proofs for properties of finite groups. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science. pp 537–546

    Google Scholar 

  97. Watrous J (2002) Limits on the power of quantum statistical zero‐knowledge. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science. pp 459–468

    Google Scholar 

  98. Watrous J (2003) On thecomplexity of simulating space‐bounded quantum computations. Comput Complex12:48–84

    Article  MathSciNet  MATH  Google Scholar 

  99. Watrous J (2003) PSPACE has constant‐round quantum interactive proof systems. Theor Comput Sci 292(3):575–588

    Article  MathSciNet  MATH  Google Scholar 

  100. Watrous J (2006) Zero‐knowledge against quantum attacks. In: Proceedings of the 38th ACM Symposium on Theory of Computing. ACM Press, New York pp 296–305

    Google Scholar 

  101. Wehner S (2006) Entanglement in interactive proof systems with binary answers. In: Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science. Lect Notes Comput Sci 3884:162–171

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Watrous, J. (2012). Quantum Computational Complexity. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_147

Download citation

Publish with us

Policies and ethics