Skip to main content

Adaptation and Contraction Theory for the Synchronization of Complex Neural Networks

  • Chapter

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 3))

Abstract

In this chapter, we will present two different approaches to solve the problem of synchronizing networks of interacting dynamical systems. The former will be based on making the coupling between agents in the network adaptive and evolving so that synchronization can emerge asymptotically. The latter will be using recent results from contraction theory to give conditions on the node dynamics and the network topology that result into the desired synchronized motion. The theoretical results will be illustrated by means of some representative examples, including networks of neural oscillators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A function F:I→ℝ is positive definite if F(x)>0, ∀xI, x≠0 and F(0)=0. A function f:ℝ≥0→ℝ≥0 is of class k if it is continuous, positive definite and strictly increasing.

References

  1. Anastassiou CA, Montgomery SM, Barahona M, Buzsaki G, Koch C (2010) The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci 30:1925–1936

    Article  PubMed  CAS  Google Scholar 

  2. Angeli D, Sontag ED (1999) Forward completeness, unboundedness observability, and their Lyapunov characterizations. Syst Control Lett 38:209–217

    Article  Google Scholar 

  3. Bard E, Mason O (2009) Canars, clusters and synchronization in a weakly coupled interneuron model. SIAM J Appl Dyn Syst 8:253–278

    Article  Google Scholar 

  4. Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York

    Book  Google Scholar 

  5. De Lellis P, di Bernardo M, Garofalo F (2009) Novel decentralized adaptive strategies for the synchronization of complex networks. Automatica 45(5):1312–1318

    Article  Google Scholar 

  6. De Lellis P, di Bernardo M, Garofalo F (2008) Synchronization of complex networks through local adaptive coupling. Chaos 18:037110

    Article  PubMed  Google Scholar 

  7. De Lellis P, di Bernardo M, Sorrentino F, Tierno A (2008) Adaptive synchronization of complex networks. Int J Comput Math 85(8):1189–1218

    Article  Google Scholar 

  8. De Lellis P, di Bernardo M, Garofalo F, Porfiri M (2010) Evolution of complex networks via edge snapping. IEEE Trans Circuits Syst I 57(8):2132–2143

    Article  Google Scholar 

  9. De Lellis P, di Bernardo M, Russo G (2011) On QUAD, Lipschitz and contracting vector fields for consensus and synchronization of networks. IEEE Trans Circuits Syst I 58(3):576–583

    Article  Google Scholar 

  10. El Boustani S, Marre O, Behuret P, Yger P, Bal T, Destexhe A, Fregnac Y (2009) Network-state modulation of power-law frequency-scaling in visual cortical neurons. PLoS Comput Biol 5:e1000519

    Article  PubMed  Google Scholar 

  11. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Article  PubMed  CAS  Google Scholar 

  12. Gerard L, Slotine JJ Neural networks and controlled symmetries, a generic framework. Available at: http://arxiv1.library.cornell.edu/abs/q-bio/0612049v2

  13. Godsil C, Royle G (2001) Algebraic graph theory. Springer, New York

    Book  Google Scholar 

  14. Gonze D, Bernard S, Walterman C, Kramer A, Herzerl H (2005) Spontaneous synchronization of coupled circadian oscillators. Biophys J 89:120–129

    Article  PubMed  CAS  Google Scholar 

  15. Hartman P (1961) On stability in the large for systems of ordinary differential equations. Can J Math 13:480–492

    Article  Google Scholar 

  16. Henson MA (2004) Modeling synchronization of yeast respiratory oscillations. J Theor Biol 231:443–458

    Article  PubMed  Google Scholar 

  17. Hong D, Sidel WM, Man S, Martin JV (2007) Extracellular noise-induced stochastic synchronization in heterogeneous quorum sensing network. J Theor Biol 245:726–736

    Article  PubMed  Google Scholar 

  18. Izhikevich EM (2006) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge

    Google Scholar 

  19. Lai CW, Chen CK, Liao TL, Yan JJ (2007) Adaptive synchronization for nonlinear FitzHugh–Nagumo neurons in external electrical stimulation. Int J Adapt Control Signal Process 22:833–844

    Article  Google Scholar 

  20. Lewis DC (1949) Metric properties of differential equations. Am J Math 71:294–312

    Article  Google Scholar 

  21. Lohmiller W, Slotine JJE (1998) On contraction analysis for non-linear systems. Automatica 34:683–696

    Article  Google Scholar 

  22. McMillen D, Kopell N, Hasty J, Collins JJ (2002) Synchronization of genetic relaxation oscillators by intercell signaling. Proc Natl Acad Sci USA 99:679–684

    Article  PubMed  CAS  Google Scholar 

  23. Medvedev GS, Kopell N (2001) Synchronization and transient dynamics in the chains of electrically coupled FitzHugh–Nagumo oscillators. SIAM J Appl Math 61:1762–1801

    Article  Google Scholar 

  24. Michel AN, Liu D, Hou L (2007) Stability of dynamical systems: continuous, discontinuous, and discrete systems. Springer, New York

    Google Scholar 

  25. Neiman A, Schimansky-Geier L, Cornell-Bell A, Moss F (1999) Noise-enhanced phase synchronization in excitable media. Phys Rev Lett 83(23):4896–4899

    Article  CAS  Google Scholar 

  26. Pavlov A, Pogromvsky A, van de Wouv N, Nijmeijer H (2004) Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Syst Control Lett 52:257–261

    Article  Google Scholar 

  27. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature 5:805–811

    CAS  Google Scholar 

  28. Pham QC, Slotine JJE (2007) Stable concurrent synchronization in dynamic system networks. Neural Netw 20:62–77

    Article  PubMed  Google Scholar 

  29. Pham QC, Tabareau N, Slotine JJE (2009) A contraction theory approach to stochastic incremental stability. IEEE Trans Autom Control 54:816–820

    Article  Google Scholar 

  30. Russo G, di Bernardo M (2009) An algorithm for the construction of synthetic self synchronizing biological circuits. In: IEEE international symposium on circuits and systems, pp 305–308

    Chapter  Google Scholar 

  31. Russo G, di Bernardo M (2009) How to synchronize biological clocks. J Comput Biol 16:379–393

    Article  PubMed  CAS  Google Scholar 

  32. Russo G, Slotine JJE (2010) Global convergence of quorum-sensing networks. Phys Rev E 82(4), submitted

    Google Scholar 

  33. Russo G, di Bernardo M, Sontag ED (2010) Global entrainment of transcriptional systems to periodic inputs. PLoS Comput Biol 6(4):e1000739

    Article  PubMed  Google Scholar 

  34. Russo G, di Bernardo M, Slotine JJE (2011) A graphical approach to prove contraction of nonlinear circuits and systems. IEEE Trans Circuits and Syst I 58(2):336–348

    Article  Google Scholar 

  35. Slotine JJ (2003) Modular stability tools for distributed computation and control. Int J Adapt Control Signal Process 17:397–416

    Article  Google Scholar 

  36. Sontag ED (1998) Mathematical control theory. Deterministic finite-dimensional systems. Springer, New York

    Google Scholar 

  37. Tabareau N, Slotine JJ, Pham QC (2010) How synchronization protects from noise. PLoS Comput Biol 6:e1000637

    Article  PubMed  Google Scholar 

  38. Wang W, Slotine JJE (2005) On partial contraction analysis for coupled nonlinear oscillators. Biol Cybern 92:38–53

    Article  PubMed  Google Scholar 

  39. Yu W, De Lellis P, Chen G, di Bernardo M, Kurths J (2010) Distributed adaptive control of synchronization in complex networks. IEEE Trans Autom Control, submitted

    Google Scholar 

  40. Zhou C, Kurths J (2006) Dynamical weights and enhanced synchronization in adaptive complex networks. Phys Rev Lett 96:164102

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario di Bernardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DeLellis, P., di Bernardo, M., Russo, G. (2012). Adaptation and Contraction Theory for the Synchronization of Complex Neural Networks. In: Rao, A., Cecchi, G. (eds) The Relevance of the Time Domain to Neural Network Models. Springer Series in Cognitive and Neural Systems, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0724-9_2

Download citation

Publish with us

Policies and ethics