Skip to main content

Tulp1 Is Involved in Specific Photoreceptor Protein Transport Pathways

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Tulp1 plays a critical role in protein transport from the photoreceptor inner segment (IS) to the outer segment (OS). To dissect which OS protein transport pathways are affected in the absence of Tulp1, we surveyed the localization of proteins destined for the OS in tulp1−/− mice. Immunohistochemistry was used to examine the localization of several classes of OS proteins as well as proteins involved in OS protein transport in young tulp1−/− mice prior to retinal degeneration. Comparisons were made to wild-type littermates. The absence of Tulp1 did not affect the transport of several phototransduction and OS structural proteins including phosphodiesterase, rhodopsin kinase, ROM-1, peripherin/RDS, and the cation channel. However, other phototransduction proteins such as rhodopsin, cone opsins, guanylate cyclase 1, and guanylate cyclase-activating proteins 1 and 2 were mislocalized to additional photoreceptor compartments. Two proteins that translocate in response to light stimulation were affected differently in tulp1−/− retinas; transducin translocated correctly whereas arrestin did not. In addition, chaperone proteins critical in the transport of rhodopsin-containing post-Golgi vesicles, Rab6, Rab8, and Rab11, were severely disrupted in tulp1−/− retinas. We conclude that Tulp1 is required for the correct transport of specific integral membrane proteins and their respective binding partners. Other classes of OS resident proteins do not appear to be affected. These differences support the hypothesis that Tulp1 plays a specific, critical role in photoreceptor OS protein transport pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi AH, Garzozi HJ, Ben-Yosef T (2008) A novel splice-site mutation of TULP1 underlies severe early-onset retinitis pigmentosa in a consanguineous Israeli Muslim Arab family. Mol Vis 14:675–682

    PubMed  CAS  Google Scholar 

  • Banerjee P, Kleyn PW, Knowles JA et al (1998) TULP1 mutation in two extended Dominican kindreds with autosomal recessive retinitis pigmentosa. Nat Genet 18:177–179

    Article  PubMed  CAS  Google Scholar 

  • Baehr W, Karan S, Maeda T et al (2007) The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J Biol Chem 282:8837–8847

    Article  PubMed  CAS  Google Scholar 

  • Berson EL (1993) Retinitis pigmentosa. The Friedenwald Lecture. Inves Ophthalmol Vis Sci 34:1659–1676

    CAS  Google Scholar 

  • Boughman JA, Conneally PM, Nance WE (1980) Population genetic studies of retinitis pigmentosa. Am J Hum Genet 32:223–235

    PubMed  CAS  Google Scholar 

  • Bunker CH, Berson EL, Bromley WC et al (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97:357–365

    PubMed  CAS  Google Scholar 

  • Calvert PD, Strissel KJ, Schiesser WE et al (2006) Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol 16:560–568

    Article  PubMed  CAS  Google Scholar 

  • Deretic D (2006) A role for rhodopsin in a signal transduction cascade that regulates membrane trafficking and photoreceptor polarity. Vision Res 46:4427–4433

    Article  PubMed  CAS  Google Scholar 

  • Grossman GH, Pauer GJ, Narendra U et al (2009) Early synaptic defects in tulp1−/− mice. Invest Ophthalmol Vis Sci 50:3074–3083

    Article  PubMed  Google Scholar 

  • Grossman GH, Watson RF, Pauer GJT et al (2011) Tulp1-dependent Outer Segment Protein Transport Pathways in Photoreceptor Cells. Exp Eye Res Aug. 16 (Epub ahead of print)

    Google Scholar 

  • Gu S, Lennon A, Li Y et al (1998) Tubby-like protein-1 mutations in autosomal recessive retinitis pigmentosa. Lancet 351:1103–1104

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom SA, North MA, Nishina PL et al (1998) Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. Nat Genet 18:174–176

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom SA, Duyao M, North MA et al (1999) Retinal degeneration in tulp1−/− mice: vesicular accumulation in the interphotoreceptor matrix. Invest Ophthalmol Vis Sci 40:2795–2802

    PubMed  CAS  Google Scholar 

  • Hagstrom SA, Adamian M, Scimeca M et al (2001) A role for the Tubby-like protein 1 in rhodopsin transport. Invest Ophthalmol Vis Sci 42:1955–1962

    PubMed  CAS  Google Scholar 

  • He W, Ikeda S, Bronson RT et al (2000) GFP-tagged expression and immunohistochemical studies to determine the subcellular localization of the tubby gene family members. Brain Res Mol Brain Res 81:109–117

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, He W, Ikeda A et al (1999) Cell-specific expression of tubby gene family members (tub, Tulp1, 2, and 3) in the retina. Invest Ophthalmol Vis Sci 40:2706–2712

    PubMed  CAS  Google Scholar 

  • Ikeda S, Shiva N, Ikeda A et al (2000) Retinal degeneration but not obesity is observed in null mutants of the tubby-like protein 1 gene. Hum Mol Genet 9:155–163

    Article  PubMed  CAS  Google Scholar 

  • Karan S, Zhang H, Li S et al (2008) A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments. Vision Res 48:442–452

    Article  PubMed  CAS  Google Scholar 

  • Kleyn PW, Fan W, Kovats SG et al (1996) Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell 85:281–290

    Article  PubMed  CAS  Google Scholar 

  • Mataftsi A, Schorderet DF, Chachoua L et al (2007) Novel TULP1 mutation causing leber congenital amaurosis or early onset retinal degeneration. Invest Ophthalmol Vis Sci 48:5160–5167

    Article  PubMed  Google Scholar 

  • Nishina PM, North MA, Ikeda A et al (1998) Molecular characterization of a novel tubby gene family member, TULP3, in mouse and humans. Genomics 54:215–220

    Article  PubMed  CAS  Google Scholar 

  • North MA, Naggert JK, Yan Y et al (1997) Molecular characterization of TUB, TULP1, and TULP2, members of the novel tubby gene family and their possible relation to ocular diseases. Proc Natl Acad Sci USA 94:3128–3133

    Article  PubMed  CAS  Google Scholar 

  • Norton AW, Hosier S, Terew JM et al (2005) Evaluation of the 17-kDa prenyl-binding protein as a regulatory protein for phototransduction in retinal photoreceptors. J Biol Chem 280:1248–1256

    Article  PubMed  CAS  Google Scholar 

  • Paloma E, Hjelmqvist L, Bayes M et al (2000) Novel mutations in the TULP1 gene causing autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 41:656–659

    PubMed  CAS  Google Scholar 

  • Sahly I, Gogat K, Kobetz A et al (1998) Prominent neuronal-specific tub gene expression in cellular targets of tubby mice mutation. Hum Mol Genet 7:1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Slepak VZ, Hurley JB (2008). Mechanism of light-induced translocation of arrestin and transducin in photoreceptors: interaction-restricted diffusion. IUBMB Life 60:2–9

    Article  PubMed  CAS  Google Scholar 

  • Xi Q, Pauer GJ, Marmorstein AD et al (2005) Tubby-like protein 1 (TULP1) interacts with F-actin in photoreceptor cells. Invest Ophthalmol Vis Sci 46:4754–4761

    Article  PubMed  Google Scholar 

  • Xi Q, Pauer GJ, Ball SL et al (2007) Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1. Invest Ophthalmol Vis Sci 48:2837–2844

    Article  PubMed  Google Scholar 

  • Yang RB, Robinson SW, Xiong WH et al (1999) Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 19:5889–5897

    PubMed  CAS  Google Scholar 

  • Zhang H, Li S, Dhoan T et al (2007) Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc Natl Acad Sci USA 104:8857–8862

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

National Institute of Health Grants EY16072 and EY15638 (SAH), Foundation Fighting Blindness (SAH), Prevent Blindness Ohio (RFW), Fight For Sight (GHG), Research to Prevent Blindness (RPB) Center Grant, RPB Sybil B. Harrington Special Scholar Award (SAH), and Hope for Vision (SAH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie A. Hagstrom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Hagstrom, S.A., Watson, R.F., Pauer, G.J.T., Grossman, G.H. (2012). Tulp1 Is Involved in Specific Photoreceptor Protein Transport Pathways. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_100

Download citation

Publish with us

Policies and ethics