Skip to main content

Target-Following Methods for Linear Programming

  • Chapter
  • 672 Accesses

Part of the book series: Applied Optimization ((APOP,volume 5))

Abstract

We give a unifying approach to various primal-dual interior point methods by performing the analysis in ‘the space of complementary products’, or ν-space, which is closely related to the use of weighted logarithmic barrier functions. We analyze central and weighted path- following methods, Dikin-path-following methods, variants of a shifted barrier method and the cone-affine scaling method, efficient centering strategies, and efficient strategies for computing weighted centerss

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.S. Atkinson and P.M. Vaidya. A scaling technique for finding the weighted analytic center of a polytope.Mathematical Programming, 57: 163–192, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  2. D.A. Bayer and J.C. Lagarias. The nonlinear geometry of linear programming, Part I: Affine and projective scaling trajectories.Transactions of the American Mathematical Society, 314: 499–526, 1989.

    MathSciNet  MATH  Google Scholar 

  3. J. Ding and T.Y. Li. An algorithm based on weighted logarithmic barrier functions for linear complementarity problems.Arabian Journal for Science and Engineering, 15: 679–685, 1990.

    MathSciNet  Google Scholar 

  4. J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems.Journal of the ACM, 19: 248–264, 1972.

    Article  MATH  Google Scholar 

  5. R.M. Freund. Theoretical efficiency of a shifted barrier function algorithm for linear programming.Linear Algebra and Its Applications, 152: 19–41, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.M. Freund. Projective transformations for interior-point algorithms, and a superlinearly convergent algorithm for the w-center problem.Mathematical Programming, 58: 385–414, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-L. Goffin and J.-Ph. Vial. On the computation of weighted analytic centers and dual ellipsoids with the projective algorithm.Mathematical Programming, 60: 81–92, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  8. C.C. Gonzaga. Path following methods for linear programming.SIAM Review, 34: 167–227, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.C. Gonzaga. The largest step path following algorithm for monotone linear complementarity problems. Technical Report 94–07, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1994.

    Google Scholar 

  10. C.C. Gonzaga and R.A. Tapia. On the quadratic convergence of the simplified Mizuno-Todd-Ye algorithm for linear programming. Technical Report 92–41, Dept. of Mathematical Sciences, Rice University, Houston, TX, USA, 1992.

    Google Scholar 

  11. O. Güler, C. Roos, T. Terlaky, and J.-Ph. Vial. Interior point approach to the theory of linear programming. Cahiers de Recherche 1992.3, Faculte des Sciences Economique et Sociales, Universite de Geneve, Geneve, Switzerland, 1992. ( To appear in Management Science).

    Google Scholar 

  12. O. Güler and Y. Ye. Convergence behavior of interior-point algorithms.Mathematical Programming, 60: 215–228, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. den HertogInterior Point Approach to Linear, Quadratic and Convex Programming, Algorithms and Complexity. Kluwer Publishers, Dordrecht, The Netherlands, 1994.

    Book  Google Scholar 

  14. D. den Hertog, C. Roos, and T. Terlaky. A polynomial method of weighted centers for convex quadratic programmingJournal of Information & Optimization Sciences, 12: 187–205, 1991.

    MATH  Google Scholar 

  15. B. JansenInterior point techniques in optimization; complementarity,sensitivity and algorithms. PhD thesis, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1995.

    Google Scholar 

  16. B. Jansen, C. Roos, and T. Terlaky. A family of polynomial affine scaling algorithms for positive semi-definite linear complementarity problems. Technical Report 93–112, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1993.

    Google Scholar 

  17. B. Jansen, C. Roos, and T. Terlaky. A polynomial primal-dual Dikin-type algorithm for linear programming. Technical Report 93–36, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1993. ( To appear in Mathematics of Operations Research)

    Google Scholar 

  18. B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Primal-dual target-following algorithms for linear programming. Technical Report 93–107, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1993. ( To appear in Annals of Operations Research)

    Google Scholar 

  19. B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Primal-dual algorithms for linear programming based on the logarithmic barrier method.Journal of Optimization Theory and Applications, 83: 1–26, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. Aunified approach to interior point algorithms for linear complementarity problems, volume 538 ofLecture Notes in Computer Science. Springer Verlag, Berlin, Germany, 1991.

    Google Scholar 

  21. M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear programming. In N. Megiddo, editor,Progress in Mathematical Programming: Interior Point and Related Methods, pages 29–47. Springer Verlag, New York, 1989.

    Google Scholar 

  22. L. McLinden. The analogue of Moreau’s proximation theorem, with applications to the nonlinear complementarity problem.Pacific Journal of Mathematics, 88: 101–161, 1980.

    MathSciNet  MATH  Google Scholar 

  23. N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo, editor,Progress in Mathematical Programming: Interior Point and Related Methods, pages 131–158. Springer Verlag, New York, 1989.

    Google Scholar 

  24. S. Mizuno. An O(n 3 L) algorithm using a sequence for linear complementarity problems.Journal of the Operations Research Society of Japan, 33: 66–75, 1990.

    MathSciNet  MATH  Google Scholar 

  25. S. Mizuno. A new polynomial time method for a linear complementarity problem.Mathematical Programming, 56: 31–43, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Mizuno, M.J. Todd, and Y. Ye. On adaptive step primal-dual interior- point algorithms for linear programmingMathematics of Operations Research, 18: 964 - 981, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  27. R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms: Part I: Linear programmingMathematical Programming, 44: 27–41, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Nesterov and M.J. Todd. Self-scaled barriers and interior-point methods for convex programming. Technical Report 1091, School of OR and IE, Cornell University, Ithaca, New York, USA, 1994. (To appear in Mathematics of Operations Research).

    Google Scholar 

  29. C. Roos and D. den Hertog. A polynomial method of weighted centers for linear programming.Technical Report 89–13, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1989.

    Google Scholar 

  30. C. Roos and J.-Ph. Vial. A polynomial method of approximate centers for linear programming.Mathematical Programming, 54: 295–305, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  31. J.F. Sturm and S. Zhang. An O\(\left( {\sqrt {n} L} \right)\) iteration bound primal-dual cone affine scaling algorithm. Technical Report TI 93–219, Tinbergen Institute, Erasmus University Rotterdam, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jansen, B., Roos, C., Terlaky, T. (1996). Target-Following Methods for Linear Programming. In: Terlaky, T. (eds) Interior Point Methods of Mathematical Programming. Applied Optimization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3449-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3449-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3451-4

  • Online ISBN: 978-1-4613-3449-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics