Skip to main content

Abstract

Robustness should not be taken for granted. After decades of gaining acceptance, Robust Control Theory has permeated practically every approach to controller design. Of course, PID cannot be an exception. The introduction of robustness considerations within the PID paradigm has created an active focus of research. During the last decades, a number of approaches have emerged introducing new considerations into the design of PID controllers by considering the robustness as a design specification. Of course, this can take several forms and formulations. This chapter specially concentrates on those approaches that lead to robust tuning rules. The use of different robustness measures is presented, and the importance of ensuring the specifications are met. This fact allows for a posterior analysis of the well-known (but not quantitatively analyzed) Robustness/Performance tradeoff. A possible route to this analysis is presented at the end of the chapter as a suggestion on how to approach this problem and have a clearer idea of the price paid for increasing the demand for robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcántara, S., Pedret, C., Vilanova, R.: On the model matching approach to PID design: analytical perspective for robust servo/regulator tradeoff tuning. J. Process Control 20, 596–608 (2010)

    Article  Google Scholar 

  2. Alcántara, S., Pedret, C., Vilanova, R., Zhang, W.D.: Simple analytical min-max model matching approach to robust proportional-integrative-derivative tuning with smooth set-point response. Ind. Eng. Chem. Res. 49, 690–700 (2010)

    Article  Google Scholar 

  3. Alcántara, S., Zhang, W.D., Pedret, C., Vilanova, R., Skogestad, S.: IMC-like analytical \(\mathcal{H}_{\infty}\) design with S/SP mixed sensitivity consideration: utility in PID tuning guidance. J. Process Control 21, 554–563 (2011)

    Article  Google Scholar 

  4. Alfaro, V.M.: Low-order models identification from process reaction curve. Cienc. Tecnol. 24(2), 197–216 (2006) (in Spanish)

    MathSciNet  Google Scholar 

  5. Alfaro, V.M., Méndez, V., Vilanova, R., Lafuente, J.: Performance/Robustness tradeoff analysis of PI/PID servo and regulatory control systems. In: IEEE International Conference on Industrial Technology (ICIT2010), Viña del Mar, Valparaiso, Chile, 14–17 March 2010

    Google Scholar 

  6. Alfaro, V.M., Vilanova, R., Arrieta, O.: Analytical robust tuning of PI controllers for first-order-plus-dead-time processes. In: 13th IEEE International Conference on Emerging Technologies and Factory Automation, Hamburg, Germany, 15–18 September 2008

    Google Scholar 

  7. Alfaro, V.M., Vilanova, R., Arrieta, O.: NORT: a non-oscillatory robust tuning approach for 2-DoF PI controllers. In: 18th International Conference on Control Applications part of the IEEE Multi-Conference on Systems and Control (CCA2009), Saint Petersburg, Russia, 8–9 July 2009

    Google Scholar 

  8. Alfaro, V.M., Vilanova, R., Arrieta, O.: A single-parameter robust tuning approach for two-degree-of-freedom PID controllers. In: European Control Conference (ECC09), Budapest, Hungary, pp. 1788–1793, 23–26 August 2009

    Google Scholar 

  9. Alfaro, V.M., Vilanova, R., Arrieta, O.: Maximum sensivity based robust tuning for two-degree-of-freedom proportional-integral controllers. Ind. Eng. Chem. Res. 49, 5415–5423 (2010)

    Article  Google Scholar 

  10. Ali, A., Mahi, S.: PI/PID controller design based on IMC and percentage overshoot specification to controller setpoint change. ISA Trans. 48, 10–15 (2009)

    Article  Google Scholar 

  11. Arrieta, O., Vilanova, R.: Simple PID tuning rules with guaranteed M s robustness achievement. In: 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011

    Google Scholar 

  12. Åström, K.J., Hägglund, T.: Automatic tuning of simple regulators with specifications on phase and amplitude margin. Automatica 20, 645–651 (1984)

    Article  MATH  Google Scholar 

  13. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning. Instrument of Society of America (1995)

    Google Scholar 

  14. Åström, K.J., Hägglund, T.: Benchmark systems for PID control. In: IFAC Digital Control: Past, Present and Future of PID Control (PID’00), Terrassa, Spain (2000)

    Google Scholar 

  15. Åström, K.J., Hägglund, T.: Revisiting the Ziegler–Nichols step response method for PID control. J. Process Control 14, 635–650 (2004)

    Article  Google Scholar 

  16. Åström, K.J., Hägglund, T.: Advanced PID Control. ISA—The Instrumentation, Systems, and Automation Society (2006)

    Google Scholar 

  17. Åström, K.J., Panagopoulos, H., Hägglund, T.: Design of PI controllers based on non-convex optimization. Automatica 34, 585–601 (1998)

    Article  MATH  Google Scholar 

  18. Babb, M.: Pneumatic instruments gave birth to automatic control. Control Eng. 37(12), 20–22 (1990)

    Google Scholar 

  19. Bar-on, J.R., Jonckheere, E.A.: Phase margins for multivariable control systems. Int. J. Control 52(2), 485–498 (1998)

    Article  MathSciNet  Google Scholar 

  20. Bennett, S.: The past of PID controllers. In: IFAC Digital Control: Past, Present and Future of PID Control, Terrassa, Spain (2000)

    Google Scholar 

  21. Chen, D., Seborg, D.E.: PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res. 41(19), 4807–4822 (2002)

    Article  Google Scholar 

  22. Chien, I.L., Fruehauf, P.S.: Consider IMC tuning to improve performance. Chem. Eng. Prog. 86(10), 33–41 (1990)

    Google Scholar 

  23. Chien, I.L., Hrones, J.A., Reswick, J.B.: On the automatic control of generalized passive systems. Trans. ASME 74, 175–185 (1952)

    Google Scholar 

  24. Cohen, G.H., Coon, G.A.: Theoretical considerations of retarded control. Trans. Am. Soc. Mech. Eng. 75, 827–834 (1953)

    Google Scholar 

  25. Dahlin, E.G.: Designing and tuning digital controllers. Instrum. Control Syst. 41(6), 77–81 (1968)

    Google Scholar 

  26. Grimble, M.J.: Robust Industrial Control. Optimal Design Approach for Polynomial Systems. Prentice-Hall International, Englewood Cliffs (1994)

    Google Scholar 

  27. Hägglund, T., Åström, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control. Asian J. Control 4, 354–380 (2002)

    Google Scholar 

  28. Hägglund, T., Åström, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control—Part II, the frequency response method. Asian J. Control 6, 469–482 (2004)

    Article  Google Scholar 

  29. Herreros, A., Baeyens, E., Peran, J.R.: Design of PID-type controllers using multiobjective genetic algorithms. ISA Trans. 41(4), 457–472 (2002)

    Article  Google Scholar 

  30. Ho, W.K., Gan, O.P., Tay, E.B., Ang, E.L.: Performance and gain and phase margins of well-known PID tuning formulas. IEEE Trans. Control Syst. Technol. 4(11), 473–477 (1996)

    Article  Google Scholar 

  31. Ho, W.K., Hang, C.C., Cao, L.S.: Tuning PID controllers based on gain and phase margin specifications. Automatica 31(3), 497–502 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ho, W.K., Hang, C.C., Zhou, J.H.: Performance and gain and phase margins of well-known PI tuning formulas. IEEE Trans. Control Syst. Technol. 3(2), 245–248 (1995)

    Article  Google Scholar 

  33. Ho, W.K., Lee, T.H., Gan, O.P.: Tuning of multiloop PID controllers based on gain and phase margin specifications. Ind. Eng. Chem. Res. 36(6), 2231–2238 (1997)

    Article  Google Scholar 

  34. Ho, W.K., Lim, K.L., Hang, C.C., Ni, L.Y.: Getting more phase margin and performance out of PID controllers. Automatica 35, 1579–1585 (1999)

    Article  MATH  Google Scholar 

  35. Huang, H.-P., Jeng, J.-C.: Monitoring and assessment of control performance for single loop systems. Ind. Eng. Chem. Res. 41, 1297–1309 (2002)

    Article  Google Scholar 

  36. Johnson, M., Moradi, M.H.: PID Control: New Identification and Design Methods. Springer, London (2005)

    Google Scholar 

  37. Kristiansson, B.: PID controllers, design and evaluation. PhD thesis, Control and Automation Laboratory, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden (2003)

    Google Scholar 

  38. Kristiansson, B., Lennartson, B.: Evaluation and simple tuning of PID controllers with high-frequency robustness. J. Process Control 16, 91–102 (2006)

    Article  Google Scholar 

  39. Kristiansson, B., Lennartson, B.: Robust tuning of PI and PID controllers. IEEE Control Syst. Mag. 26(1), 69 (2006)

    Article  MathSciNet  Google Scholar 

  40. Leva, A., Colombo, A.M.: On the IMC-based synthesis of the feedback block of ISA PID regulators. Trans. Inst. Meas. Control 26(5), 417–440 (2004)

    Article  Google Scholar 

  41. Morari, M., Zafiriou, E., Economou, C.G.: Robust Process Control. Springer, Berlin (1988)

    Google Scholar 

  42. O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 3rd edn. Imperial College Press, London (2009)

    Book  Google Scholar 

  43. Persson, P.: Towards autonomous PID control. PhD thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden (1992)

    Google Scholar 

  44. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control 4. PID controller design. Ind. Eng. Chem. Res. 25, 252–265 (1986)

    Google Scholar 

  45. Shen, J.-C.: New tuning method for PID controller. ISA Trans. 41, 473–484 (2002)

    Article  Google Scholar 

  46. Shinskey, F.G.: Process Control Systems: Application, Design, and Tuning. 3rd edn. McGraw-Hill, New York (1988)

    Google Scholar 

  47. Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13, 291–309 (2003)

    Article  Google Scholar 

  48. Smith, A.C., Corripio, B.A.: Principles and Practice of Automatic Process Control. Wiley, New York (1985)

    Google Scholar 

  49. Tan, W., Liu, J., Chen, T., Marquez, H.J.: Comparison of some well-known PID tuning formulas. Comput. Chem. Eng. 30, 1416–1423 (2006)

    Article  Google Scholar 

  50. Tavakoli, S., Tavakoli, M.: Optimal tuning of PID controllers for first order plus time delay models using dimensional analysis. In: The Fourth International Conference on Control and Automation (ICCA’03), Montreal, Canada, June 2003

    Google Scholar 

  51. Tavakoli, S., Griffin, I., Fleming, P.J.: Robust PI controller for load disturbance rejection and setpoint regulation. In: IEEE Conference on Control Applications, Toronto, Canada, 28–31 August 2005

    Google Scholar 

  52. Tavakoli, S., Griffin, I., Fleming, P.J.: Multi-objetive optimization approach to the PI tuning problem. In: IEEE Congress on Evolutionary Computing (CEC2007), pp. 3165–3171 (2007)

    Chapter  Google Scholar 

  53. Toivonen, H.T., Totterman, S.: Design of fixed-structure controllers with frequency-domain criteria: a multiobjective optimisation approach. IEE Proc. D, Control Theory Appl. 153(1), 46–52 (2006)

    Article  Google Scholar 

  54. Vidyasagar, M.: Control System Synthesis. A Factorization Approach. MIT Press, Cambridge (1985)

    MATH  Google Scholar 

  55. Vilanova, R.: IMC based robust PID design: tuning guidelines and automatic tuning. J. Process Control 18, 61–70 (2008)

    Article  Google Scholar 

  56. Vilanova, R., Alfaro, V.M., Arrieta, O., Pedret, C.: Analysis of the claimed robustness for PI/PID robust tuning rules. In: 18th IEEE Mediterranean Conference on Control and Automation (MED10), Marrakech, Morocco, 23–25 June 2010

    Google Scholar 

  57. Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc., Control Theory Appl. 148(2), 180–184 (2001)

    Article  Google Scholar 

  58. Visioli, A.: Practical PID Control. Advances in Industrial Control Series. Springer, Berlin (2006)

    MATH  Google Scholar 

  59. Wang, Q.-G.: Decoupling Control. Springer, New York (2003)

    MATH  Google Scholar 

  60. Wang, Q.-G., He, Y., Ye, Z., Lin, C., Hang, C.-C.: On loop phase margins of multivariable control systems. J. Process Control 18(2), 202–211 (2008)

    Article  Google Scholar 

  61. Wang, Q.-G., Ye, Z., Cai, W.-J., Hang, C.-C.: PID Control for Multivariable Processes. Lecture Notes in Control and Information Sciences. Springer, Berlin (2008)

    MATH  Google Scholar 

  62. Zames, G., Francis, B.A.: Feedback, minmax sensitivity and optimal robustness. IEEE Trans. Autom. Control 28, 585–601 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhuang, M., Atherton, D.P.: Automatic tuning of optimum PID controllers. IEE Proc. Part D. Control Theory Appl. 140(3), 216–224 (1993)

    Article  MATH  Google Scholar 

  64. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759–768 (1942)

    Google Scholar 

Download references

Acknowledgements

This work has received financial support from the Spanish CICYT program under grant DPI2010-15230. Also, the financial support from the University of Costa Rica and from the MICIT and CONICIT of the Government of the Republic of Costa Rica is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Vilanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Vilanova, R., Alfaro, V.M., Arrieta, O. (2012). Robustness in PID Control. In: Vilanova, R., Visioli, A. (eds) PID Control in the Third Millennium. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2425-2_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2424-5

  • Online ISBN: 978-1-4471-2425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics