Skip to main content

Fungal Treatment of Crop Processing Wastewaters with Value-Added Co-Products

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Conventional biological wastewater treatment generates large amounts of low-value bacterial biomass. The treatment and disposal of this excess bacterial biomass accounts for about 40–60% of wastewater treatment plant operational costs. A different form of biomass with a higher value could significantly change the economics of wastewater treatment. Fungi could offer this benefit over bacteria in selected wastewater treatment processes. The biomass produced during fungal wastewater treatment has, potentially, a much higher value than that from the bacterial activated sludge process. The fungi can be used as a protein source and to derive valuable biochemicals. Various high-value biochemicals are produced by commercial cultivation of fungi under aseptic conditions using expensive substrates. Food processing wastewater is an attractive alternative as a source of low-cost organic matter and nutrients to produce fungi with concomitant wastewater purification. This chapter summarizes various findings in fungal wastewater treatment, particularly focusing on creating new byproducts. This chapter also provides an overview on performance of fungal treatment systems under various operational conditions. Important factors such as pH, temperature, hydraulic and solids retention time, nonaxenic and axenic operation, bacterial contamination and others that affect the fungal treatment system are discussed. The work described culminates in the design and operational experience in operating a pilot plant for beneficiating leftovers from ethanol production from corn. Lastly, production of other valuable biochemicals from fungi as further byproducts is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Metcalf and Eddy (2003) In: Tchobanoglous G, Burton FL, Stensel HD (eds) Wastewater engineering: treatment and reuse, 4th edn. McGraw Hill, New York

    Google Scholar 

  2. Weemaes MPJ, Verstraete WH (1998) Evaluation of current wet sludge disintegration techniques. J Chem Technol Biotechnol 73:83–92

    Article  Google Scholar 

  3. Canales A, Pareilleux A, Rols JL, Goma G, Huyard A (1994) Decreased sludge production strategy for domestic treatment. Water Sci Technol 30:97–116

    Google Scholar 

  4. Barbesgaard P, Heldt-Hansen HP, Diterichsen B (1992) On the safety of aspergillus oryzae: a review. Appl Microbiol Biotechnol 36:569–572

    Article  Google Scholar 

  5. Guest RK, Smith DW (2002) A potential new role for fungi in a wastewater MBR biological nitrogen reduction system. J Environ Eng Sci 1:433–437

    Article  Google Scholar 

  6. Jin B, Van Leeuwen J, Patel B, Yu Q (1998) Utilization of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by aspergillus oryzae. Bioresour Technol 66:201–206

    Article  Google Scholar 

  7. Jin B, Van Leeuwen J, Yu Q, Patel B (1999) Screening and selection of microfungi for microbial biomass protein production and water reclamation from starch processing wastewater. J Chem Technol Biotechnol 74:106–110

    Article  Google Scholar 

  8. Van Leeuwen J, Hu Z, Yi TW, Pometto AL III, Jin B (2003) Kinetic model for selective cultivation of microfungi in a microscreen process for food processing wastewater treatment and biomass production. Acta Biotechnol 23:289–300

    Article  Google Scholar 

  9. Jin B, Van Leeuwen J, Patel B, Doelle HW, Yu Q (1999) Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochem 34:59–65

    Article  Google Scholar 

  10. Zheng S, Yang M, Yang Z (2005) Biomass production of yeast isolate from salad oil manufacturing wastewater. Bioresour Technol 96:1183–1187

    Article  Google Scholar 

  11. Bergmann FW, Abe J, Hizukuri S (1988) Selection of microorganisms which produce raw-starch degrading enzymes. Appl Microbiol Biotechnol 27:443–446

    Google Scholar 

  12. Gonzalez MP, Siso MIG, Murado MA, Pastrana L, Montemayor MI, Miron J (1992) Depuration and valuation of mussel-processing wastes. Characterization of amylolytic postincubates from different species grown on an effluent. Bioresour Technol 42:133–140

    Article  Google Scholar 

  13. Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manage 86:481–497

    Article  Google Scholar 

  14. Nigam P (1994) Process selection for protein-enrichment: fermentation of the sugar industry byproducts molasses and sugar beet pulp. Process Biochem 29:337–342

    Article  Google Scholar 

  15. Adams RL (2001) Mycotoxins. http://www.moldreporter.org/vol1no3/mycotoxins. Accessed 23 Feb 2006

  16. D’Annibale A, Ricci M, Quaratino D, Federici F, Fenice M (2004) Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Res Microbiol 155:596–603

    Article  Google Scholar 

  17. Giraud F, Guiraud P, Kadri M, Blake G, Steiman R (2001) Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res 35:4126–4136

    Article  Google Scholar 

  18. Jaouani A, Guillén F, Penninckx MJ, Martínez AT, Martínez MJ (2005) Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzym Microb Technol 36:478–486

    Article  Google Scholar 

  19. Chróst RJ, Siuda W (2002) Ecology of microbial enzymes in lake ecosystems. Enzymes in the environment: activity ecology and applications, vol 640. CRC Press, New York, pp 35–72

    Google Scholar 

  20. Riser-Roberts E (1998) Remediation of petroleum contaminated soils: biological, physical, and chemical processes. CRC Press, Boca Raton

    Book  Google Scholar 

  21. Bennett JW, Lasure LL (1991) More gene manipulations in fungi. Academic Press, San Diego

    Google Scholar 

  22. Gravesen S, Frisvad JC, Samson RA (1994) Microfungi. Munksgaard Publishers, Copenhagen

    Google Scholar 

  23. Sankaran S, Khanal SK, Jasti N, Jin B, Pometto AL III, van Leeuwen J (2010) Use of filamentous fungi for wastewater treatment and production of high value fungal by-products: a review. Crit Rev Environ. Sci Biotech 40(5):400–449

    Article  Google Scholar 

  24. Kendrick B (2000) The fifth kingdom. Fungal Physiology, 3rd edn. Focus publishing, Newburyport, pp 142–158

    Google Scholar 

  25. Dick MW (1997) Fungi, flagella and phylogeny. Mycol Res 101:385–394

    Article  Google Scholar 

  26. Tanesaka E, Masuda H, Kinugawa K (1993) Wood degrading ability of basidiomycetes that are wood decomposers, litter decomposers, or mycorrhizal symbionts. Mycologia 85:347–354

    Article  Google Scholar 

  27. Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  Google Scholar 

  28. Guimarães C, Porto P, Oliveira R, Mota M (2005) Continuous decolourization of a sugar refinery wastewater in a modified rotating biological contactor with Phanerochaete chrysosporium immobilized on polyurethane foam disks. Process Biochem 40:535–540

    Article  Google Scholar 

  29. Mendonca E, Pereira P, Martins A, Anselma AM (2004) Fungal biodegradation and detoxification of cork boiling wastewaters. Eng Life Sci 4:144–149

    Article  Google Scholar 

  30. Raghukumar C, Mohandass C, Kamat C, Shailaja MS (2004) Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enzym Microbiol Technol 35:197–202

    Article  Google Scholar 

  31. Van der Westhuizen TH, Pretorius WA (1998) Use of filamentous fungi for the purification of industrial effluents, WRC report No. 535/l/98, Pretoria, South Africa

    Google Scholar 

  32. Wu J, Xiao YZ, Yu HQ (2005) Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour Technol 96:1357–1363

    Article  Google Scholar 

  33. Friedrich J (1987) Mixed culture of Aspergillus awamori and Trichoderma reesei for bioconversion of apple distillery waste. Appl Microbiol Biotechnol 26:299–303

    Article  Google Scholar 

  34. Shrestha P, Rasmussen ML, Khanal SK, Pometto AL III, van Leeuwen J (2008) Saccharification of corn fiber by Phanerochaete chrysosporium in solid-state fermentation and subsequent fermentation of hydrolysate into ethanol. J Agric Food Saf 56(11):3918–3924

    Article  Google Scholar 

  35. Walker GM, White NA (2005) Introduction to fungal physiology. In: Kavanagh K (ed) Fungi: biology and applications. Wiley, West Sussex, pp 1–34

    Chapter  Google Scholar 

  36. Roux-Van der Merwe MP, Badenhorst J, Britz TJ (2005) Fungal treatment of an edible-oil-containing industrial effluent. World J Microbiol Biotechnol 21:947–953

    Article  Google Scholar 

  37. Ratledge C (1989) Biotechnology of oils and fats. Microbial lipids, vol 2. Academic Press, San Diego, pp 567–688

    Google Scholar 

  38. Finnerty WR (1989) Microbial lipid metabolism. Microbial lipids, vol 2. Academic Press, San Diego, pp 525–566

    Google Scholar 

  39. Jin B, Tin P, Ma Y, Zhao L (2005) Production of lactic acid and fungal biomass by rhizopus fungi from food processing waste streams. J Ind Microbiol Biotechnol 32:678–686

    Article  Google Scholar 

  40. Carlile MJ, Watkinson SC (1994) The fungi. Academic Press, New York

    Google Scholar 

  41. Stevens CA, Gregory KF (1987) Production of microbial biomass protein from potato processing wastes by Cephalosporium eichhorniae. Appl Environ Microbiol 53:284–291

    Google Scholar 

  42. Jasti N, Khanal SK, Pometto AL III, van Leeuwen J(Hans) 2006 Fungal treatment of corn processing wastewater in an attached growth system. Water Pract Technol 1(3):115–122

    Google Scholar 

  43. Rasmussen ML, Khanal SK, Pometto AL III, van Leeuwen J(Hans) (2011) Water reclamation and value-added animal feed from corn ethanol stillage by fungal processing. Biomass Bioenergy (in press)

    Google Scholar 

  44. Kurakov AV, Popov AI (1996) Nitrifying activity and phytotoxicity of microscopic soil fungi. Eurasian Soil Sci 28:73–84

    Google Scholar 

  45. Jin B, Van Leeuwen J, Patel B, Yu Q (1999) Mycelial morphology and fungal protein production from starch processing wastewater in submerged cultures of aspergillus oryzae. Process Biochem 34:335–340

    Article  Google Scholar 

  46. Moore-Landecker E (1990) Fundamentals of the fungi, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  47. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  Google Scholar 

  48. Madigan MT, Martinko JM, Parker J (2000) Biology of microorganisms, 10th edn. Prentice Hall International Inc., London

    Google Scholar 

  49. Jin B, Yan XQ, Yu Q, Van Leeuwen J (2002) A comprehensive pilot plant system for fungal biomass protein production and wastewater reclamation. Adv Environ Res 6:179–189

    Article  Google Scholar 

  50. Mishra BK, Arora A (2004) Optimization of a biological process for treating potato chips industry wastewater using a mixed culture of aspergillus foetidus and aspergillus niger. Bioresour Technol 94:9–12

    Article  Google Scholar 

  51. Riscaldati E, Moresi M, Federici F, Petruccioli M (2000) Effect of pH and stirring rate on itaconate production by aspergillus terreus. J Biotechnol 83:219–230

    Article  Google Scholar 

  52. Van Leeuwen J, Hu Z, Yi TW, Pometto AL III (2002) Use of micro-fungi for single cell protein production during food-processing wastewater treatment. In: Proceedings of the 75th water environmental federation technical exhibition and conference, Chicago, 30 Sept–2 Oct

    Google Scholar 

  53. Jin B, van Leeuwen J(Hans), Yu Q, Patel B (1999) Screening and selection of microfungi for microbial biomass protein production and water reclamation from starch processing wastewater. J Chem Technol Biotechnol 74:106–110

    Article  Google Scholar 

  54. Metz B, Kossen NWF (1977) The growth of molds in the form of pellets-a literature review. Biotechnol Bioeng 19:781–799

    Article  Google Scholar 

  55. Van Suijdam JC, Metz B (1981) Influence of engineering variables upon the morphology of filamentous molds. Biotechnol Bioeng 23:111–148

    Article  Google Scholar 

  56. Tabak HH, Cooke WB (1968) The effects of gaseous environments on growth and metabolism of fungi. Bot Rev 34:126–252

    Article  Google Scholar 

  57. U.S. Energy Information Administration via Farms.com News

    Google Scholar 

  58. USDA (2010) http://www.ers.usda.gov/Publications/FDS/2010/11Nov/ FDS10K01/

  59. Renewable Fuels Association (RFA) (2009) Growing innovation: America’s energy future starts at home. 2009 Ethanol Industry Outlook, Washington, D.C

    Google Scholar 

  60. Dunn L (2008) Personal communication through Lincolnway Energy, LLC

    Google Scholar 

  61. Schaefer SH, Sung S (2008) Retooling the ethanol industry: thermophilic anaerobic digestion of thin stillage for methane production and pollution prevention. Water Environ Res 80(2):101–108

    Article  Google Scholar 

  62. Singh S, Fan M, Brown RC (2007) Ozone treatment of process water from a dry-mill ethanol plant. Bioresource Technol 99(6):1801–1805

    Article  Google Scholar 

  63. RFA. Resource center: how ethanol is made. http://www.ethanolrfa.org/resource/made/. Accessed 10/01/09

  64. USDA (2011) Market issues and prospects for U.S. distillers’ grains: supply, use, and price relationships/FDS-10 k-01 economic research service

    Google Scholar 

  65. Sheep Industry News (2007) Ethanol boom gives rise to cheaper sheep rations, Becky Talley. http://sheepindustrynews.org 11(11) November. Accessed 23 March 2011

  66. Dhiraj A, Vattem A, Shetty K (2002) Solid-state production of phenolic antioxidants from cranberry pomace by rhizopus oligosporus. Food Biotechnol 16(3):189–210

    Article  Google Scholar 

  67. Gautam P, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Microbial production of extracellular phytase using polystyrene as inert solid support. Bioresour Technol 83(3):229–233

    Article  Google Scholar 

  68. Nahas E (1988) Control of lipase production by rhizopus oligosporus under various growth conditions. J Gen Microbiol 134(1):227–233

    Google Scholar 

  69. Sutardi, Buckle KA (1988) Characterization of extra- and intracellular phytases from rhizopus oligosporus used in tempeh production. Int J Food Microbiol 6(1):67–79

    Google Scholar 

  70. Yanai K, Takaya N, Kojima N, Horiuchi H, Ohta A, Takagi M (1992) Purification of two chitinases from rhizopus oligosporus and isolation and sequencing of the encoding genes. J Bacteriol 174(22):7398–7406

    Google Scholar 

  71. Tan SC, Tan TK, Wong SM, Khor E (1996) The chitosan yield of zygomycetes at their optimum harvesting time. Carbohydr Polym 30:239–342

    Article  Google Scholar 

  72. Rhodes RA, Hall HH, Anderson RF, Nelson GEN, Shekleton MC, Jackson RW (1961) Lysine, methionine, and tryptophan content of microorganisms III Molds. Appl Environ Microbiol 9(3):181–184

    Google Scholar 

  73. Jasti N, Khanal SK, Pometto AL III, van Leeuwen J(Hans) (2008) Converting corn wet milling effluent into high-value fungal biomass in an attached growth bioreactor. Biotechnol Bioeng 101(6):1223–1233

    Article  Google Scholar 

  74. Jasti N, Rasmussen ML, Khanal SK, Pometto AL III, van Leeuwen J(Hans) (2009) Influence of selected operating parameters on fungal biomass production in corn ethanol wastewater. J Environ Eng 135:1106–1114

    Article  Google Scholar 

  75. Jin B, Yu Q, van Leeuwen J(Hans) (2001) A bioprocessing mode for fungal biomass protein production and wastewater treatment using an external airlift bioreactor. J Chem Technol Biotechnol 76:1041–1048

    Article  Google Scholar 

  76. Jin B, Yu Q, Yan XQ, van Leeuwen J (2001) Characterization and improvement of oxygen transfer in pilot plant external air-lift bioreactor for mycelial biomass production and wastewater treatment. World J Appl Microbiol Biotechnol 17:265–272

    Article  Google Scholar 

  77. Jin B, Yu Q, van Leeuwen J, Hung YT (2009) Integrated biotechnological fungal biomass protein production and wastewater reclamation, environmental bioengineering. In: Wang LK, Tay JH, Tay STL, Hung YT (eds) Handbook of environmental engineering, vol 11. The Humana Press, Inc., Totowa, p 465

    Google Scholar 

  78. Rasmussen ML, Kambam Y, Khanal SK, Pometto AL III, van Leeuwen J(Hans) 2007 Thin stillage treatment from dry-grind ethanol plants with fungi. American Society of Agricultural and Biological Engineers (ASABE) annual international meeting, Minneapolis, USA

    Google Scholar 

  79. Sankaran S, Khanal SK, Pometto AL III, van Leeuwen J(Hans) (2008) Ozone as a selective disinfectant for nonaseptic fungal cultivation on corn-processing wastewater. Bioresour Technol 99(17):8265–8273

    Article  Google Scholar 

  80. Jasti N, Khanal SK, Pometto AL III, Van Leeuwen J (2005) Attached growth fungal system for food-processing wastewater treatment and high value protein recovery. In: CD-ROM Proceedings of 78th annual conference & exposition (WEFTEC), Washington, D.C, 29 Oct–2 Nov 2005

    Google Scholar 

  81. Walker GM (1998) Yeast physiology and biotechnology. Wiley, 350p ISBN:0-471-96446-8

    Google Scholar 

  82. Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by rhizopus fungi. Biochem Eng J 35:251–263

    Article  Google Scholar 

  83. Sparringa RA, Owens JD (1999) Causes of alkalinization in tempe solid substrate fermentation. Enzym Microb Technol 25:677–681

    Article  Google Scholar 

  84. Cheeke PR (2005) Protein sources, 3rd edn. Upper Saddle River, USA, pp 91–144

    Google Scholar 

  85. Ozsoy HD, Kumbur H, Saha B, van Leeuwen J (2008) Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu(II) ions removal from the aqueous solutions. Bioresource Tech 99(11):4943–4948

    Article  Google Scholar 

  86. Ozsoy HD, van Leeuwen J (2010) Pb(II) ions removal from aqueous solutions by rhizopus oligosporus produced from food processing wastewater, Chap 16. In: Canton KW (ed) Fluid waste disposal. Environmental science, engineering and technology series, Nova Publishers, Hauppauge, pp 317–329, ISBN: 978-1-60741-915-0

    Google Scholar 

  87. Ozsoy HD, van Leeuwen J(H) (2011) Use of dried Rhizopus microsporus, produced from corn processing wastes, as adsorbent for metal removal from wastewater. In: Gopalakrishnan K, van Leeuwen J(H), Brown RC (eds) Sustainable bioenergy and bioproducts. Green energy and technology series VII. Springer, New York. (Chapter 3 (2012) , ISBN 978-1-4471-2323-1)

    Google Scholar 

  88. Shrestha P, Rasmussen ML, Nitayavardhana S, Khanal SK, van Leeuwen J (2010) Value-added processing of residues from biofuel industries, Chapter 17. In: Khanal SK, Zhang T, Surampalli R, Tyagi R, Lamsal B (eds) Biofuel and bioenergy from biowastes and residues. American society of civil engineers, p 522, ISBN-10: 0784410895

    Google Scholar 

  89. Khanal SK, Rasmussen ML, Shrestha P, Lamsal BP, van Leeuwen J, Visvanathan C, Liu H (2008) Bioenergy and biofuel from wastes/residues of emerging biofuel industries. Water Environ Res 80(10):1625–1647

    Article  Google Scholar 

  90. Shrestha P (2006) Saccharification of corn fiber by phanerochaete chrysosporium in solid-state fermentation and subsequent fermentation of hydrolysate into ethanol. Iowa State University, M.S. thesis

    Google Scholar 

  91. Rasmussen ML, Shrestha P, Khanal SK, Pometto AL III, van Leeuwen J (2010) Sequential saccharification of corn fiber and ethanol production by the brown-rot fungus gloeophyllum trabeum. Bioresour Tech 101(10):3526–3533

    Article  Google Scholar 

  92. Shrestha P, Khanal SK, Pometto AL, van Leeuwen J (2009) Corn fiber induced extracellular enzymes production by wood-rot and soft-rot fungi for subsequent fermentation of hydrolysate to ethanol. J Agric Food Chem 57(10):4156–4161

    Article  Google Scholar 

  93. Vincent M, Pometto AL, van Leeuwen J(H) (2011) Simultaneous saccharification and fermentation of ground corn stover for the production of fuel ethanol using Phanerochaete chrysosporium, Geophyllum trabeum, Saccharomyces cerevisiae, and Escherichia col K011. J Microbiol Biotechnol 21(7):703–710

    Google Scholar 

  94. Vincent M, Pometto AL III, van Leeuwen J(H) (2011) Evanluation of potential fungal species for the in sity simultaneous saccharification and fermentation (SSF) of cellulosic material. Malaysian. J Microbiol 7(3):129--138

    Google Scholar 

  95. Shrestha P, Khanal SK, Pometto AL, Van Leeuwen J (2011) Study of cellulose degrading enzyme profiles during fungal saccharification of corn fiber. J Agric Food Chem (in press)

    Google Scholar 

  96. Shrestha P, Pometto AL III, Khanal SK, van Leeuwen J(Hans) (2012) Secondgeneration biofuel production from corn-ethanol industry residues. In: Gopalakrishnan K, van Leeuwen J(H), Brown RC (eds) Sustainable bioenergy and bioproducts. Springer, New York (Chapter 5)

    Google Scholar 

  97. Karki B, Lamsal BP, Grewell D, Pometto AL III, van Leeuwen J(Hans), Khanal SK, Jung S (2009) Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. J American Oil Chem Society 86(10):1021–1028

    Google Scholar 

  98. Mitra D, Rasmussen ML, Chand P, Chintareddy VR, Yao L, Grewell D, Verkad JG, Wang T, van Leeuwen J(Hans) (2011) Bioresour Technol (in press)

    Google Scholar 

  99. Falanghe H, Smith AK, Rackis JJ (1964) Production of fungal mycelial protein in submerged culture of soybean whey. Appl Environ Microbiol 12(4):330--334

    Google Scholar 

  100. Yokoi H, Aratake T, Nishio S, Hirose J (1998) Production of chitosan from mycelia of the fungus Gongronella butleri. Artificial Organs 22(10):837--848

    Google Scholar 

  101. Suntornsuk W, Pochanavanich P, Suntornsuk L (2002) Fungal chitosan production on food processing by-products. Process Biochem 37:727–729

    Article  Google Scholar 

  102. O’Brien DJ, Heiland WK (1993) Attached growth biological reactor for the 1485 growth and harvesting of filamentous fungi. US Patent No. 5246854

    Google Scholar 

  103. Farabee MJ (2001) http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookDiversity_4.html. Accessed 19 Nov 2005

  104. Futcher T (2005) http://www.cs.cuc.edu/~tfutcher/Deuteromycota.html. Accessed 19 Nov 2005

  105. El-Zalaki ME, Hamza MA (1979) Edible mushrooms as producers of amylases. Food Chem 4:203–211

    Article  Google Scholar 

  106. NCIM (2005) Strains with special application: fungi. The national collection of industrial microorganisms (NCIM) catalogue, National chemical Laboratory. http://wdcm.nig.ac.jp/catalogue/ncim/document/Ncim_s_fungi.pdf, Pune, India. Accessed 20 June 2005

  107. Allan GG, Fox JR, Kong N (1978) A critical evaluation of the potential sources of chitin and chitosan. In: Muzzarelli RAA, Pariser ER (ed) Proceedings of the first international conference on Chitin/Chitosan. MIT Sea grant report MITSG78-7, index no. 78-307-Dmb, Massachusetts Institute of Technology, Cambridge, pp 64–78

    Google Scholar 

  108. Knorr D, Klein J (1986) Production and conversion of chitosan with cultures of Mucor rouxii or phycomyces blakesleeanus. Biotechno Lett 8:691–694

    Article  Google Scholar 

  109. Davoust N, Hansson G (1991) Identifying the conditions for development of beneficial mycelium morphology for chitosan-producing Absidia spp. in submersed cultures. Appl Microbiol Biotechnol 36:618–620

    Google Scholar 

  110. Andrade VS, Neto BB, Souza W, Takaki GMC (2000) A factorial design analysis of chitin production by cunninghamella elegans. Can J Microbiol 46:1042–1045

    Google Scholar 

  111. Manjunath P, Shenoy BC, Rao MR (1983) Review: fungal glucoamylases. J Appl Biochem 5:235–260

    Google Scholar 

  112. Stone PJ, Makoff AJ, Parish JH, Radford A (1993) Cloning and sequence analysis of the glucoamylase gene of Neurospora crassa. Curr Genet 24:205–211

    Article  Google Scholar 

  113. Norouzian D, Akbarzadeh A, Scharer JM, Young MM (2006) Fungal glucoamylases. Biotechnol Adv 24:80–85

    Article  Google Scholar 

  114. Rosenberg M, Kristofikova L (1995) Physiological restriction of the L-lactic acid production by rhizopus arrhizus. Acta Biotechnol 15:367–374

    Article  Google Scholar 

  115. Mirdamadi S, Sadeghi H, Sharafi N, Falahpour M, Mohseni AF, Bakhtiari MR (2002) Comparison of lactic acid produced by fungal and bacterial strains. Iran Biomed J 6:69–75

    Google Scholar 

  116. Huang LP, Jin B, Lant P, Zhou J (2003) Biotechnological production of lactic acid integrated with potato wastewater treatment by rhizopus arrhizus. J Chem Technol Biotechnol 78:899–906

    Article  Google Scholar 

  117. Data from National Research Center (1988) Nutrient requirements of swine, 10th edn. National Academies Press, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. (Hans) van Leeuwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

van Leeuwen, J. et al. (2012). Fungal Treatment of Crop Processing Wastewaters with Value-Added Co-Products. In: Gopalakrishnan, K., van Leeuwen, J., Brown, R. (eds) Sustainable Bioenergy and Bioproducts. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2324-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2324-8_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2323-1

  • Online ISBN: 978-1-4471-2324-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics