Skip to main content

Dual Role of Nitric Oxide in Cancer Biology

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Extensive research work performed over the past decades has focused on understanding the role of nitric oxide (NO) in both promoting and preventing cancer. The precise role of NO in tumor biology has been the cause of intense debate. Experimental evidences available in the literature highlight contrasting pro- and anti-tumor effects of NO. It is now becoming clear that concentration- and time-dependent regulation of NO leads to tumor growth, cytostasis, or cell death. It is known that NO participates in various signaling pathways including Ras, extracellular signal-regulated kinases (ERKs), Akt, cyclin D1/retinoblastoma (Rb) as mammalian target of rapamycin (mTOR) that are crucial for tumor cells. NO mediated post-translational modification of key proteins including S-nitrosylation of caspases, tyrosine nitration of mitochondrial manganese superoxide dismutase (MnSOD), or cytochrome c. Various attempts toward developing NO-based cancer therapy are still in primitive stages, and a clear understanding of the levels of NOS expression, its timing, and the concentrations of NO produced in the tumor microenvironment is key to the development of novel strategies for tumor treatment and prevention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn, B. and Ohshima, H. (2001). Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res. 61(23), 8357–8360.

    PubMed  CAS  Google Scholar 

  • Ambs, S., Bennett, W.P., Merriam, W.G., Ogunfusika, M.O., Oser, S.M., Harrington, A.M., Shields, P.G., Felley-Bosco, E., Hussain, S.P., and Harris, C.C. (1999). Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J. Natl. Cancer Inst. 6, 91(1), 86–88.

    Article  Google Scholar 

  • Ambs, S., Merriam, W.G., Bennett, W.P., Felley-Bosco, E., Ogunfusika, M.O., Oser, S.M., Klein, S., Shields, P.G., Billiar, T.R., and Harris, C.C. (1998a). Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 58(2), 334–341.

    PubMed  CAS  Google Scholar 

  • Ambs, S., Bennett, W.P., Merriam, W.G., Ogunfusika, M.O., Oser, S.M., Khan, M.A., Jones, R.T., and Harris, C.C. (1998b). Vascular endothelial growth factor and nitric oxide synthase expression in human lung cancer and the relation to p53. Br. J. Cancer 78(2), 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Ambs, S., Merriam, W.G., Ogunfusika, M.O., Bennett, W.P., Ishibe, N., Hussain, S.P., Tzeng, E.E., Geller, D.A., Billiar, T.R., and Harris, C.C. (1998c). p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat. Med. 4(12), 1371–1376.

    Article  PubMed  CAS  Google Scholar 

  • Azad, N., Vallyathan, V., Wang, L., Tantishaiyakul, V., Stehlik, C., Leonard, S.S., Rojanasakul, Y. (2006). S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J. Biol. Chem. 281(45), 34124–34134.

    CAS  Google Scholar 

  • Beeharry, N., Chambers, J.A., Faragher, R.G., Garnett, K.E., and Green, I.C. (2004). Analysis of cytokine-induced NO-dependent apoptosis using RNA interference or inhibition by 1400 W. Nitric Oxide 10(2), 112–118.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, P.A., Palacios-Callender, M., Umar, T., Hughes, D., Spedding, A.V., Zaki, G.A., and Langdon, J.D. (2000). Correlation between type II nitric oxide synthase and p53 expression in oral squamous cell carcinoma. Br. J. Oral Maxillofac. Surg. 38(6), 627–632.

    Article  PubMed  CAS  Google Scholar 

  • Cantuaria, G., Magalhaes, A., Angioli, R., Mendez, L., Mirhashemi, R., Wang, J., Wang, P., Penalver, M., Averette, H., and Braunschweiger, P. (2000). Antitumor activity of a novel glyco-nitric oxide conjugate in ovarian carcinoma. Cancer 88(2), 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Chao, J.I., Kuo, P.C., and Hsu, T.S. (2004). Down-regulation of survivin in nitric oxide-induced cell growth inhibition and apoptosis of the human lung carcinoma cells. J. Biol. Chem. 279(19), 20267–20276.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T., Nines, R.G., Peschke, S.M., Kresty, L.A., and Stoner, G.D. (2004). Chemopreventive effects of a selective nitric oxide synthase inhibitor on carcinogen-induced rat esophageal tumorigenesis. Cancer Res. 64(10), 3714–3717.

    Article  PubMed  CAS  Google Scholar 

  • Chong, Z.Z., Li, F., and Maiese, K. (2005). Activating Akt and the brain’s resources to drive cellular survival and prevent inflammatory injury. Histol. Histopathol. 20(1), 299–315.

    PubMed  CAS  Google Scholar 

  • Cobbs, C.S., Brenman, J.E., Aldape, K.D., Bredt, D.S., and Israel, M.A. (1995). Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 55(4), 727–730.

    PubMed  CAS  Google Scholar 

  • Costantini, P., Jacotot, E., Decaudin, D., and Kroemer, G. (2000). Mitochondrion as a novel target of anticancer chemotherapy. J. Natl. Cancer Inst. 92(13), 1042–1053.

    Article  PubMed  CAS  Google Scholar 

  • Dachs, G.U. and Tozer, G.M. (2000). Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur. J. Cancer 36(13 Spec No), 1649–1660.

    Article  PubMed  CAS  Google Scholar 

  • de Wilt, J.H., Manusama, E.R., van Etten, B., van Tiel, S.T., Jorna, A.S., Seynhaeve, A.L., ten Hagen, T.L., and Eggermont, A.M. (2000). Nitric oxide synthase inhibition results in synergistic anti-tumour activity with melphalan and tumour necrosis factor alpha-based isolated limb perfusions. Br. J. Cancer 83(9), 1176–1182.

    Article  PubMed  Google Scholar 

  • Dhakshinamoorthy, S. and Porter, A.G. (2004). Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J. Biol. Chem. 279(19), 20096–20107.

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., and Zeiher, A.M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736), 601–605.

    Article  PubMed  CAS  Google Scholar 

  • Ekmekcioglu, S., Ellerhorst, J., Smid, C.M., Prieto, V.G., Munsell, M., Buzaid, A.C., and Grimm, E.A. (2000). Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin. Cancer Res. 6(12), 4768–4775.

    PubMed  CAS  Google Scholar 

  • Fantl, V., Smith, R., Brookes, S., Dickson, C., and Peters, G. (1993). Chromosome 11q13 abnormalities in human breast cancer. Cancer Surv. 18, 77–94.

    PubMed  CAS  Google Scholar 

  • Fiore, G., Di Cristo, C., Monti, G., Amoresano, A., Columbano, L., Pucci, P., Cioffi, F.A., Di Cosmo, A., Palumbo, A., and d’Ischia, M. (2006). Tubulin nitration in human gliomas. Neurosci. Lett. 394(1), 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Fukumura, D., Kashiwagi, S., and Jain, R.K. (2006). The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6(7), 521–534.

    Article  PubMed  CAS  Google Scholar 

  • Gasic, G.J., Gasic, T.B., and Stewart, C.C. (1968). Antimetastatic effects associated with platelet reduction. Proc. Natl. Acad. Sci. USA 61(1), 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, O., Masini, E., Morbidelli, L., Franchi, A., Fini-Storchi, I., Vergari, W.A., and Ziche, M. (1998). Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J. Natl. Cancer Inst. 90(8), 587–596.

    Article  PubMed  CAS  Google Scholar 

  • Ganster, R.W., Taylor, B.S., Shao, L., and Geller, D.A. (2001). Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc. Natl. Acad. Sci. USA 98(15), 8638–8643.

    Article  PubMed  CAS  Google Scholar 

  • Garbán, H.J. and Bonavida, B. (2001). Nitric oxide disrupts H2O2-dependent activation of nuclear factor kappa B. Role in sensitization of human tumor cells to tumor necrosis factor-alpha -induced cytotoxicity. J. Biol. Chem. 276(12), 8918–8923.

    Article  PubMed  Google Scholar 

  • Garbán, H.J. and Bonavida, B. (1999). Nitric oxide sensitizes ovarian tumor cells to Fas-induced apoptosis. Gynecol. Oncol. 73(2), 257–264.

    Article  PubMed  Google Scholar 

  • Goligorsky, M.S., Brodsky, S.V., and Noiri, E. (2004). NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology. Semin. Nephrol. 24(4), 316–323.

    Article  PubMed  CAS  Google Scholar 

  • Gong, L., Pitari, G., Schulz, S., and Waldman, SA. (2004). Nitric oxide signaling: systems integration of oxygen balance in defense of cell integrity. Curr. Opin. Hematol. 11, 7–14.

    Article  PubMed  CAS  Google Scholar 

  • Gratton, J.P., Lin, M.I., Yu, J., Weiss, E.D., Jiang, Z.L., Fairchild, T.A., Iwakiri, Y., Groszmann, R., Claffey, K.P., Cheng, Y.C., and Sessa, W.C. (2003). Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4(1), 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Hajri, A., Metzger, E., Vallat, F., Coffy, S., Flatter, E., Evrard, S., Marescaux, J., and Aprahamian, M. (1998). Role of nitric oxide in pancreatic tumour growth: in vivo and in vitro studies. Br. J. Cancer 78(7), 841–849.

    Article  PubMed  CAS  Google Scholar 

  • Hobbs, A.J., Higgs, A., and Moncada, S. (1999). Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39, 191–220.

    Article  PubMed  CAS  Google Scholar 

  • Hofseth, L.J., Hussain, S.P., Wogan, G.N., and Harris, C.C. (2003). Nitric oxide in cancer and chemoprevention. Free Radic. Biol. Med. 34(8), 955–968.

    Article  PubMed  CAS  Google Scholar 

  • Huerta-Yepez, S., Vega, M., Jazirehi, A., Garban, H., Hongo, F., Cheng, G., and Bonavida, B. (2004). Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene 23(29), 4993–5003.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, S.P., Hofseth, L.J., and Harris, C.C. (2003). Radical causes of cancer. Nat. Rev. Cancer 3(4), 276–285.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J. (1989). Endothelium-derived nitric oxide: actions and properties. FASEB J. 3(1), 31–36.

    PubMed  CAS  Google Scholar 

  • Ignarro, L.J. (1996). Physiology and pathophysiology of nitric oxide. Kidney Int. Suppl. 55, S2.

    PubMed  CAS  Google Scholar 

  • Jadeski, L.C., Hum, K.O., Chakraborty, C., and Lala, P.K. (2000). Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int. J. Cancer. 86(1), 30–39.

    Article  PubMed  CAS  Google Scholar 

  • Jadeski, L.C. and Lala, P.K. (1999). Nitric oxide synthase inhibition by N(G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am. J. Pathol. 155(4), 1381–1390.

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal, M., LaRusso, N.F., Nishioka, N., Nakabeppu, Y., and Gores, G.J. (2001). Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res. 61(17), 6388–6393.

    PubMed  CAS  Google Scholar 

  • Janes, P.W., Daly, R.J., deFazio, A., and Sutherland, R.L. (1994) Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene. 9(12), 3601–3608.

    PubMed  CAS  Google Scholar 

  • Juang, S.H., Xie, K., Xu, L., Shi, Q., Wang, Y., Yoneda. J., and Fidler, I.J. (1998). Suppression of tumorigenicity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene. Hum. Gene Ther. 9(6), 845–854.

    Article  PubMed  CAS  Google Scholar 

  • Kawabe, T., Isobe, K.I., Hasegawa, Y., Nakashima, I., and Shimokata, K. (1992). Immunosuppressive activity induced by nitric oxide in culture supernatant of activated rat alveolar macrophages. Immunology 76(1), 72–78.

    PubMed  CAS  Google Scholar 

  • Kawakami, K., Kawakami, M., and Puri, R.K. (2004). Nitric oxide accelerates interleukin-13 cytotoxin-mediated regression in head and neck cancer animal model. Clin. Cancer Res. 10(15), 5264–5270.

    Article  PubMed  CAS  Google Scholar 

  • Kawamori, T., Takahashi, M., Watanabe, K., Ohta, T., Nakatsugi, S., Sugimura, T., and Wakabayashi, K. (2000). Suppression of azoxymethane-induced colonic aberrant crypt foci by a nitric oxide synthase inhibitor. Cancer Lett. 148(1), 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.M., Son, K., Hong, S.J., Green, A., Chen, J.J., Tzeng, E., Hierholzer, C., and Billiar, T.R. (1998). Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 alpha. Mol. Med. 4(3), 179–190.

    PubMed  CAS  Google Scholar 

  • Kitano, H., Kitanishi, T., Nakanishi, Y., Suzuki, M., Takeuchi, E., Yazawa, Y., Kitajima, K., Kimura, H., and Tooyama, I. (1999). Expression of inducible nitric oxide synthase in human thyroid papillary carcinomas. Thyroid 9(2), 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Kleinert, H., Schwarz, P.M., and Förstermann, U. (2003). Regulation of the expression of inducible nitric oxide synthase. Biol. Chem. 384(10–11), 1343–1364.

    PubMed  CAS  Google Scholar 

  • Klotz, T., Bloch, W., Volberg, C., Engelmann, U., and Addicks, K. (1998). Selective expression of inducible nitric oxide synthase in human prostate carcinoma. Cancer 82(10), 1897–1903.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, R.G. and Moncada, S. (1994). Nitric oxide synthases in mammals. Biochem. J. 298(Pt 2), 249–258.

    PubMed  CAS  Google Scholar 

  • Kolios, G., Valatas, V., and Ward, S.G. (2004). Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 113(4), 427–437.

    Article  PubMed  CAS  Google Scholar 

  • Le, X., Wei, D., Huang, S., Lancaster, J.R. Jr., and Xie, K. (2005). Nitric oxide synthase II suppresses the growth and metastasis of human cancer regardless of its up-regulation of protumor factors. Proc. Natl. Acad. Sci. USA 4,102(24), 8758–8763.

    Article  CAS  Google Scholar 

  • Lechner, M., Lirk, P., and Rieder, J. (2005). Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin. Cancer Biol. 15(4), 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. and Billiar, T.R. (1999). The anti-apoptotic actions of nitric oxide in hepatocytes. Cell Death Differ. 6(10), 952–955.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C.Y., Wang, C.H., Chen, T.C., Lin, H.C., Yu, C.T., and Kuo, H.P. (1998). Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer. Br. J. Cancer 78(4), 534–541.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., Li, H., Underwood, T., Lloyd, M., David, M., Sperl, G., Pamukcu, R., and Thompson, W.J. (2001). Cyclic GMP-dependent protein kinase activation and induction by exisulind and CP461 in colon tumor cells. J. Pharmacol. Exp. Ther. 299(2), 583–592.

    PubMed  CAS  Google Scholar 

  • Liu, L. and Stamler, J.S. (1999). NO: an inhibitor of cell death. Cell Death Differ. 6(10), 937–942.

    Article  PubMed  CAS  Google Scholar 

  • Loibl, S., von Minckwitz, G., Weber, S., Sinn, H.P., Schini-Kerth, V.B., Lobysheva, I., Nepveu, F., Wolf, G., Strebhardt, K., and Kaufmann, M. (2002). Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer 95(6), 1191–1198.

    Article  PubMed  CAS  Google Scholar 

  • Lu, W. and Schroit, A.J. (2005). Vascularization of melanoma by mobilization and remodeling of preexisting latent vessels to patency. Cancer Res. 65(3), 913–918.

    PubMed  CAS  Google Scholar 

  • Mannick, J.B., Schonhoff, C., Papeta, N., Ghafourifar, P., Szibor, M., Fang, K., Gaston, B. (2001). S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 154(6), 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, H.E., Merchant, K., and Stamler, J.S. (2000). Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14(13), 1889–1900.

    Article  PubMed  CAS  Google Scholar 

  • Massi, D., Franchi, A., Sardi, I., Magnelli, L., Paglierani, M., Borgognoni, L., Maria Reali, U., and Santucci, M. (2001). Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J. Pathol. 194(2), 194–200.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, J.R., Botting, C.H., Panico, M., Morris, H.R., and Hay, R.T. (1996). Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res. 24(12), 2236–2242.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, L.J. and Murad, F. (1995). Nitric oxide and cGMP signaling. Adv. Pharmacol. 34, 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Michel, T. and Feron, O. (1997). Nitric oxide synthases: which, where, how, and why? J. Clin. Invest. 100(9), 2146–2152.

    Article  PubMed  CAS  Google Scholar 

  • Mocellin, S., Rossi, C.R., Pilati, P., and Nitti, D. (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 16(1), 35–53.

    Article  PubMed  CAS  Google Scholar 

  • Moilanen, E. and Vapaatalo, H. (1995). Nitric oxide in inflammation and immune response. Ann. Med. 27(3), 359–367.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S. and Higgs, A. (1993). The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329(27), 2002–2012.

    Article  PubMed  CAS  Google Scholar 

  • Morita, E.H., Ohkubo, T., Kuraoka, I., Shirakawa, M., Tanaka, K., and Morikawa, K. (1996). Implications of the zinc-finger motif found in the DNA-binding domain of the human XPA protein. Genes Cells. 1(5), 437–442.

    Article  PubMed  CAS  Google Scholar 

  • Murad, F. (1994). Regulation of cytosolic guanylyl cyclase by nitric oxide: the NO-cyclic GMP signal transduction system. Adv. Pharmacol. 26, 19–33.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C. and Xie, Q.W. (1994). Nitric oxide synthases: roles, tolls, and controls. Cell 78(6), 915.

    Article  PubMed  CAS  Google Scholar 

  • Nosho, K., Yamamoto, H., Adachi, Y., Endo, T., Hinoda, Y., and Imai, K. (2005). Gene expression profiling of colorectal adenomas and early invasive carcinomas by cDNA array analysis. Br. J. Cancer 92(7), 1193–1200.

    Article  PubMed  CAS  Google Scholar 

  • Nunokawa, Y. and Tanaka, S. (1992). Interferon-gamma inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation. Biochem. Biophys. Res. Commun. 188(1), 409–415.

    Article  PubMed  CAS  Google Scholar 

  • Olson, S.Y. and Garbán, H.J. (2008). Regulation of apoptosis-related genes by nitric oxide in cancer. Nitric Oxide 19(2), 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Pan, S.L., Guh, J.H., Peng, C.Y., Wang, S.W., Chang, Y.L., Cheng, F.C., Chang, J.H., Kuo, S.C., Lee, F.Y., and Teng, C.M. (2005). YC-1 [3-(5’-hydroxymethyl-2’-furyl)-1-benzyl indazole] inhibits endothelial cell functions induced by angiogenic factors in vitro and angiogenesis in vivo models. J. Pharmacol. Exp. Ther. 314(1), 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, P., Kharbanda, S., and Kufe, D. (1995). Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res. 55(18), 4000–4003.

    PubMed  CAS  Google Scholar 

  • Park, S.W. and Wei, L.N. (2003). Regulation of c-myc gene by nitric oxide via inactivating NF-kappa B complex in P19 mouse embryonal carcinoma cells. J. Biol. Chem. 278(32), 29776–29782.

    Article  PubMed  CAS  Google Scholar 

  • Parsa, A.T. and Holland, E.C. (2004). Cooperative translational control of gene expression by Ras and Akt in cancer. Trends Mol. Med. 10(12), 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Peng, H.B., Libby, P., and Liao, J.K. (1995). Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J. Biol. Chem. 270(23), 14214–14219.

    Article  PubMed  CAS  Google Scholar 

  • Perrotta, C., Falcone, S., Capobianco, A., Camporeale, A., Sciorati, C., De Palma, C., Pisconti, A., Rovere-Querini, P., Bellone, M., Manfredi, A.A., and Clementi, E. (2004). Nitric oxide confers therapeutic activity to dendritic cells in a mouse model of melanoma. Cancer Res. 64(11), 3767–3771.

    Article  PubMed  CAS  Google Scholar 

  • Pervin, S., Singh, R., and Chaudhuri, G. (2001a). Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc. Natl. Acad. Sci. USA 98(6), 3583–3588.

    Article  PubMed  CAS  Google Scholar 

  • Pervin, S, Singh, R., Gau, C.L., Edamatsu, H., Tamanoi, F., and Chaudhuri, G. (2001b). Potentiation of nitric oxide-induced apoptosis of MDA-MB-468 cells by farnesyltransferase inhibitor: implications in breast cancer. Cancer Res. 61(12), 4701–4706.

    PubMed  CAS  Google Scholar 

  • Pervin, S., Singh, R., Freije, W.A., and Chaudhuri, G. (2003a). MKP-1-induced dephosphorylation of extracellular signal-regulated kinase is essential for triggering nitric oxide-induced apoptosis in human breast cancer cell lines: implications in breast cancer. Cancer Res. 63(24), 8853–8860.

    PubMed  CAS  Google Scholar 

  • Pervin, S., Singh, R., and Chaudhuri, G. (2003b). Nitric-oxide-induced Bax integration into the mitochondrial membrane commits MDA-MB-468 cells to apoptosis: essential role of Akt. Cancer Res. 63(17), 5470–5479.

    PubMed  CAS  Google Scholar 

  • Pervin, S., Singh, R., Hernandez, E., Wu, G., and Chaudhuri, G. (2007). Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res. 67(1), 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Pervin, S., Tran, A.H., Zekavati, S., Fukuto, J.M., Singh, R., and Chaudhuri, G. (2008a). Increased susceptibility of breast cancer cells to stress mediated inhibition of protein synthesis. Cancer Res. 68(12), 4862–4874.

    Article  PubMed  CAS  Google Scholar 

  • Pervin, S., Singh, R., and Chaudhuri, G. (2008b). Nitric oxide, N omega-hydroxy-L-arginine and breast cancer. Nitric Oxide 19(2), 103–106.

    Article  PubMed  CAS  Google Scholar 

  • Prueitt, R.L., Boersma, B.J., Howe, T.M., Goodman, J.E., Thomas, D.D., Ying, L., Pfiester, C.M., Yfantis, H.G., Cottrell, J.R., Lee, D.H., Remaley, A.T., Hofseth, L.J., Wink, D.A., and Ambs, S. (2007). Inflammation and IGF-I activate the Akt pathway in breast cancer. Int. J. Cancer 120(4), 796–805.

    Article  PubMed  CAS  Google Scholar 

  • Raspollini, M.R., Amunni, G., Villanucci, A., Boddi, V., Baroni, G., Taddei, A., and Taddei, G.L. (2004). Expression of inducible nitric oxide synthase and cyclooxygenase-2 in ovarian cancer: correlation with clinical outcome. Gynecol. Oncol. 92(3), 806–812.

    Article  PubMed  CAS  Google Scholar 

  • Reynaert, N.L., Ckless, K., Korn, S.H., Vos, N., Guala, A.S., Wouters, E.F., van der Vliet, A., and Janssen-Heininger Y.M. (2004). Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc. Natl. Acad. Sci. USA 101(24), 8945–8950.

    Article  PubMed  CAS  Google Scholar 

  • Ridnour, L.A., Thomas, D.D., Switzer, C., Flores-Santana, W., Isenberg, J.S., Ambs, S., Roberts, D.D., and Wink, D.A. (2008). Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide 19(2), 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Ridnour, L.A., Windhausen, A.N., Isenberg, J.S., Yeung, N., Thomas, D.D., Vitek, M.P., Roberts, D.D., and Wink, D.A. (2007). Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 104(43), 16898–16903.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, H. and Bogdan, C. (2001). NO as a signaling molecule: effects on kinases. Int. Immunopharmacol. 1, 1443–1455.

    Article  PubMed  CAS  Google Scholar 

  • Schleiffer, R., Duranton, B., Gossé, F., Bergmann, C., and Raul, F. (2000). Rats. Nitric Oxide 4(6), 583–589.

    Article  PubMed  CAS  Google Scholar 

  • Selleri, C., Maciejewski, J.P., Montuori, N., Ricci, P., Visconte, V., Serio, B., Luciano, L., and Rotoli, B. (2003). Involvement of nitric oxide in farnesyltransferase inhibitor-mediated apoptosis in chronic myeloid leukemia cells. Blood 102(4), 1490–1498.

    Article  PubMed  CAS  Google Scholar 

  • Sessa, W.C. (2004). eNOS at a glance. J. Cell Sci. 117(Pt 12), 2427–2429.

    Article  PubMed  CAS  Google Scholar 

  • Shantz, L.M. (2004). Transcriptional and translational control of ornithine decarboxylase during Ras transformation. Biochem. J. 377(Pt 1), 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R., Pervin, S., Aviyakulov, N.K., Haykinson, M., Rajavashisth, T., and Chaudhuri, G. (2007). Nω Hydroxy L-Arginine-induced apoptosis in human breast cancer cells: proteomics approach for the identification of key target proteins. J. Invest. Med. 55, S142.

    Article  Google Scholar 

  • Singh, R., Pervin, S., and Chaudhuri, G. (2002). Caspase-8-mediated BID cleavage and release of mitochondrial cytochrome c during Nomega-hydroxy-L-arginine-induced apoptosis in MDA-MB-468 cells. Antagonistic effects of L-ornithine. J. Biol. Chem. 277(40), 37630–37636.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R., Pervin, S., Karimi, A., Cederbaum, S., Chaudhuri, G. (2000). Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-L-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res. 60(12), 3305–3312.

    PubMed  CAS  Google Scholar 

  • Stamler, J.S., Lamas, S., and Fang, F.C. (2001). Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106(6), 675–683.

    CAS  Google Scholar 

  • Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K., and Lee, S.S. (2001). Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480–481, 243–268.

    PubMed  Google Scholar 

  • Swana, H.S., Smith, S.D., Perrotta, P.L., Saito, N., Wheeler, M.A., and Weiss, R.M. (1999). Inducible nitric oxide synthase with transitional cell carcinoma of the bladder. J. Urol. 161(2), 630–634.

    Article  PubMed  CAS  Google Scholar 

  • Tamanoi, F., Gau, C.L., Jiang, C., Edamatsu, H., Kato-Stankiewicz, J. (2001). Protein farnesylation in mammalian cells: effects of farnesyltransferase inhibitors on cancer cells. Cell Mol. Life Sci. 58(11), 1636–1649.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D.D., Espey, M.G., Ridnour, L.A., Hofseth, L.J., Mancardi, D., Harris, C.C., and Wink, D.A. (2004). Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc. Natl. Acad. Sci. USA 101(24), 8894–8899.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D.D., Ridnour, L.A., Isenberg, J.S., Flores-Santana, W., Switzer, C.H., Donzelli, S., Hussain, P., Vecoli, C., Paolocci, N., Ambs, S., Colton, C.A., Harris, C.C., Roberts, D.D., and Wink, D.A. (2008). The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Biol. Med. 45(1), 18–31.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen, L.L., Lawton, F.G., Knowles, R.G., Beesley, J.E., Riveros-Moreno, V., and Moncada, S. (1994). Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 54(5), 1352–1354.

    PubMed  CAS  Google Scholar 

  • Thomsen, L.L., Miles, D.W., Happerfield, L., Bobrow, L.G., Knowles, R.G., and Moncada, S. (1995). Nitric oxide synthase activity in human breast cancer. Br. J. Cancer 72(1), 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen, L.L., and Miles, D.W. (1998). Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev. 17(1), 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Torreilles, J. (2001). Nitric oxide: one of the more conserved and widespread signaling molecules. Front Biosci. 6, D1161–D1172.

    Article  PubMed  CAS  Google Scholar 

  • Uneda, S., Hata, H., Matsuno, F., Nagasaki, A., Harada, N., Mitsuya, Y., Matsuzaki, H., and Mitsuya, H. (2003). A nitric oxide synthase inhibitor, N(G)-nitro-l-arginine-methyl-ester, exerts potent antiangiogenic effects on plasmacytoma in a newly established multiple myeloma severe combined immunodeficient mouse model. Br. J. Haematol. 120(3), 396–404.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B., Wei, D., Crum, V.E., Richardson, E.L., Xiong, H.H., Luo, Y., Huang, S., Abbruzzese, J.L., and Xie, K. (2003). A novel model system for studying the double-edged roles of nitric oxide production in pancreatic cancer growth and metastasis. Oncogene 22(12), 1771–1782.

    Article  PubMed  CAS  Google Scholar 

  • Weller, R., Billiar, T., and Vodovotz, Y. (2002). Pro- and anti-apoptotic effects of nitric oxide in irradiated keratinocytes: the role of superoxide. Skin Pharmacol. Appl. Skin Physiol. 15(5), 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Wen, J.C., Chaudhuri, G., and Pervin, S. (2006). An inverse interaction between survivin and MAP kinase phosphatase 1 regulates nitric oxide-induced apoptosis. J. Invest Med. 54, S145–S145 (abstract).

    Google Scholar 

  • Wenzel, U., Kuntz, S., De Sousa, U.J., and Daniel, H. (2003). Nitric oxide suppresses apoptosis in human colon cancer cells by scavenging mitochondrial superoxide anions. Int. J. Cancer. 106(5), 666–675.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, K.T., Fu, S., Ramanujam, K.S., and Meltzer, S.J. (1998). Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res. 58(14), 2929–2934.

    PubMed  CAS  Google Scholar 

  • Wink, D.A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, M.W., and Mitchell, J.B. (1998). The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19(5), 711–721.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Akaike, T., and Maeda, H. (1998). Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 58(1), 159–165.

    PubMed  CAS  Google Scholar 

  • Xie, K., Huang, S., Dong, Z., Juang, S.H., Gutman, M., Xie, Q.W., Nathan, C., and Fidler, I.J. (1995). Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J. Exp. Med. 181(4), 1333–1343.

    Article  PubMed  CAS  Google Scholar 

  • Xie, K., Huang, S., Dong, Z., Juang, S.H., Wang, Y., and Fidler, I.J. (1997). Destruction of bystander cells by tumor cells transfected with inducible nitric oxide (NO) synthase gene. J. Natl. Cancer Inst. 89(6), 421–427.

    Article  PubMed  CAS  Google Scholar 

  • Xie, K. and Huang, S. (2003). Contribution of nitric oxide-mediated apoptosis to cancer metastasis inefficiency. Free Radic. Biol. Med. 34(8), 969–986.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, T., Terada, N., Seiyama, A., Nishizawa, Y., Akedo, H., and Kosaka, H. (1998). Increase in experimental pulmonary metastasis in mice by L-arginine under inhibition of nitric oxide production by NG-nitro-L-arginine methyl ester. Int. J. Cancer 75(1), 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Yeo, E.J., Chun, Y.S., Cho, Y.S., Kim, J., Lee, J.C., Kim, M.S., and Park, J.W. (2003) YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl. Cancer Inst. 95(7), 516–525.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H.J., Zhao, W., Venkataraman, S., Robbins, M.E., Buettner, G.R., Kregel, K.C., and Oberley, L.W. (2002). Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J. Biol. Chem. 277(23), 20919–20926.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehla Pervin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Pervin, S., Singh, R., Sen, S., Chaudhuri, G. (2010). Dual Role of Nitric Oxide in Cancer Biology. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics