Skip to main content

Stable Anti-Swing Control for an Overhead Crane with Velocity Estimation and Fuzzy Compensation

  • Chapter

Part of the book series: Mathematical Modelling: Theory and Applications ((MMTA,volume 24))

Abstract

This chapter proposes a novel anti-swing control strategy for an overhead crane. The controller includes both position regulation and anti-swing control. Since the crane model is not exactly known, fuzzy rules are used to compensate friction, gravity as well as the coupling between position and anti-swing control. A highgain observer is introduced to estimate the joint velocities to realize PD control. Using a Lyapunov method and an input-to-state stability technique, the controller is proven to be robustly stable with bounded uncertainties, if the membership functions are changed by certain learning rules and the observer is fast enough. Real-time experiments are presented comparing this new stable anti-swing PD control strategy with regular crane controllers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Abdel-Rahman, A.H. Nayfeh and Z.N. Masoud. Dynamics and control of cranes: a review. Journal of Vibration and Control, Vol. 9, No. 7, 863-908, 2003.

    Article  MATH  Google Scholar 

  2. J.W. Auernig and H. Troger. Time optimal control of overhead cranes with hoisting of the payload. Automatica, Vol. 23, No. 4, 437-447, 1987.

    Article  MATH  Google Scholar 

  3. J.W. Beeston. Closed-loop time optimatial control of a suspended payload-a design study. Proc. 4th IFAC World Congress, 85-99, Warsaw Poland, 1969.

    Google Scholar 

  4. C.I. Byrnes, A. Isidori and J.C. Willems. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Contr., Vol. 36, 1228-1240, 1991.

    Google Scholar 

  5. S.K. Cho and H.H. Lee. A fuzzy-logic antiswing controller for three-dimensional overhead cranes. ISA Trans., Vol. 41, No. 2, 235-43, 2002.

    Google Scholar 

  6. G. Corriga, A. Giua and G. Usai. An implicit gain-scheduling controller for cranes. IEEE Trans. Control Systems Technology, Vol. 6, No. 1, 15-20, 1998.

    Google Scholar 

  7. C. Canudas de Wit and J.J.E. Slotine. Sliding observers for overhead crane manipulator. Automatica, Vol. 27, No. 5, 859-864, 1991.

    Article  MathSciNet  Google Scholar 

  8. G. Cybenko. Approximation by superposition of sigmoidal activation function. Math. Control, Sig Syst, Vol. 2, 303-314, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Fang, W.E. Dixon, D.M. Dawson and E. Zergeroglu. Nonlinear coupling control laws for an underactuated overhead crane system. IEEE/ASME Trans. Mechatronics, Vol. 8, No. 3, 418-423, 2003.

    Google Scholar 

  10. InTeCo, 3DCrane: Installation and Commissioning Version 1.2, Krakow, Poland, 2000.

    Google Scholar 

  11. P.A. Ioannou and J. Sun. Robust adaptive control. Prentice-Hall Inc., NJ, 1996.

    MATH  Google Scholar 

  12. Y.H. Kim and F.L. Lewis Neural Network Output Feedback Control of overhead crane Manipulator. IEEE Trans. Neural Networks, Vol. 15, 301-309, 1999.

    Google Scholar 

  13. R. Kelly. Global Positioning on overhead crane manipulators via PD control plus a classs of nonlinear integral actions. IEEE Trans. Automat. Contr., Vol. 43, No. 7, 934-938, 1998.

    Google Scholar 

  14. R. Kelly. A tuning procedure for stable PID control of robot manipulators. Robotica, Vol. 13, 141-148, 1995.

    Article  Google Scholar 

  15. B. Kiss, J. Levine and P. Mullhaupt. A simple output feedback PD controller for nonlinear cranes. Proc. Conf. Decision and Control, 5097-5101, 2000.

    Google Scholar 

  16. H.H. Lee. Modeling and control of a three-dimensional overhead crane. Journal of Dynamic Systems, Measurement, and Control, Vol. 120, 471-476, 1998.

    Article  Google Scholar 

  17. H.H. Lee. A new motion-planning scheme for overhead cranes with high-speed hoisting. Journal of Dynamic Systems, Measurement, and Control, Vol. 126, 359-364, 2004.

    Article  Google Scholar 

  18. E.H. Mamdani. Application of fuzzy algorithms for control of simple dynamic plant. IEE Proceedings — Control Theory and Applications, Vol. 121, No. 12, 1585-1588, 1976.

    Google Scholar 

  19. J.A. M éndez, L. Acosta, L. Moreno, S. Torres and G.N. Marichal. An application of a neural self-tuning controller to an overhead crane. Neural Computing and Applications, Vol. 8, No. 2, 143-150, 1999.

    Article  Google Scholar 

  20. K.A. Moustafa and A.M. Ebeid. Nonlinear modeling and control of overhead crane load sway. Journal of Dynamic Systems, Measurement, and Control, Vol. 110, 266-271, 1988.

    Article  Google Scholar 

  21. M.W. Noakes and J.F. Jansen. Generalized input for damped-vibration control of suspended payloads. Journal of Robotics and Autonomous Systems, Vol. 10, No. 2, 199-205, 1992.

    Article  Google Scholar 

  22. S. Nicosia and A. Tornambe. High-gain observers in the state and parameter estimation of overhead cranes having elastic joins. System & Control Letters, Vol. 13, 331-337, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  23. E.D. Sontag and Y. Wang. On characterization of the input-to-state stability property. System & Control Letters, Vol. 24, 351-359, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  24. O. Sawodny, H. Aschemann and S. Lahres. An automated gantry crane as a large workspace robot. Control Engineering Practice, Vol. 10, No. 12, 1323-1338, 2002.

    Article  Google Scholar 

  25. Y. Sakawa and Y. Shindo. Optimal control of container cranes. Automatica, Vol. 18, No. 3, 257-266, 1982.

    Article  MATH  Google Scholar 

  26. W. Singhose, W. Seering and N. Singer. Residual vibration reduction using vector diagrams to generate shaped inputs. Journal of Dynamic Systems, Measurement, and Control, Vol. 116, 654-659, 1994.

    Google Scholar 

  27. M. Takegaki and S. Arimoto. A new feedback method for dynamic control of manipulator. ASME J. Dynamic Syst. Measurement, and Contr., Vol. 103, 119-125, 1981.

    Article  MATH  Google Scholar 

  28. R. Toxqui, W. Yu and X. Li. PD control of overhead crane systems with neural compensation. Advances in Neural Networks -ISNN 2006, Springer-Verlag, Lecture Notes in Computer Science, LNCS 3972, 1110-1115, 2006.

    Google Scholar 

  29. L.X. Wang. Adaptive Fuzzy Systems and Control. Englewood Cliffs NJ: Prentice-Hall, 1994.

    Google Scholar 

  30. J. Yu, F.L. Lewis and T. Huang. Nonlinear feedback control of a gantry crane. Proc. 1995 American Control Conference, Seattle, 4310-4315, USA, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Yu, W., Li, X., Irwin, G.W. (2008). Stable Anti-Swing Control for an Overhead Crane with Velocity Estimation and Fuzzy Compensation. In: Lowen, R., Verschoren, A. (eds) Foundations of Generic Optimization. Mathematical Modelling: Theory and Applications, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6668-9_6

Download citation

Publish with us

Policies and ethics