Skip to main content

Human Embryonal Carcinoma (EC) Cells: Complementary Tools for Embryonic Stem Cell Research

  • Chapter

Part of the book series: Human Cell Culture ((HUCC,volume 6))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, S.L., Knowles, B.B., et al. (1994) Gene regulation during neuronal and non-neuronal differentiation of NTERA2 human teratocarcinoma-derived stem cells. Brain Res. Mol. Brain Res., 25(1–2): 157–162.

    PubMed  CAS  Google Scholar 

  • Andrews, P.W. (1982) Human embryonal carcinoma cells in culture do not synthesize fibronectin until they differentiate. Int. J. Cancer, 30(5): 567–571.

    PubMed  CAS  Google Scholar 

  • Andrews, P.W. (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol., 103(2): 285–293.

    PubMed  CAS  Google Scholar 

  • Andrews, P.W. (2002) From teratocarcinomas to embryonic stem cells. Philos. Trans. R. Soc. Lond. B, Biol. Sci., 357: 405–417.

    Google Scholar 

  • Andrews, P.W., Bronson, D.L., et al. (1980) A comparative study of eight cell lines derived from human testicular teratocarcinoma. Int. J. Cancer, 26(3): 269–280.

    PubMed  CAS  Google Scholar 

  • Andrews, P.W., Casper, J., et al. (1996) Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. Int. J. Cancer, 66(6): 806–816.

    PubMed  CAS  Google Scholar 

  • Andrews, P.W. and Damjanov, I. (1994) Cells from human germ-cell tumours. In: Atlas of Human Tumor Cell Lines (Eds.: Hay, R.J., Park, J.G., and Gazdar, A.), Academic Press, London, pp. 443–476.

    Google Scholar 

  • Andrews, P.W., Damjanov, I., et al. (1994) Inhibition of proliferation and induction of differentiation of pluripotent human embryonal carcinoma cells by osteogenic protein-1 (or bone morphogenetic protein-7). Lab Invest., 71(2): 243–251.

    PubMed  CAS  Google Scholar 

  • Andrews, P.W., Damjanov, I., et al. (1984) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest., 50(2): 147–162.

    CAS  Google Scholar 

  • Andrews, P.W., Gonczol, E., et al. (1986) Differentiation of TERA-2 human embryonal carcinoma cells into neurons and HCMV permissive cells. Induction by agents other than retinoic acid. Differentiation, 31(2): 119–126.

    CAS  Google Scholar 

  • Andrews, P.W., Goodfellow, P.N., et al. (1982) Cell-surface antigens of a clonal human embryonal carcinoma cell line: morphological and antigenic differentiation in culture. Int. J. Cancer, 29(5): 523–531.

    PubMed  CAS  Google Scholar 

  • Andrews, P.W., Matin, M.M., et al. (2005) Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem. Soc. Trans., 33(Pt 6): 1526–1530.

    PubMed  CAS  Google Scholar 

  • Andrews, P.W., Nudelman, E., et al. (1990) Different patterns of glycolipid antigens are expressed following differentiation of TERA-2 human embryonal carcinoma cells induced by retinoic acid, hexamethylene bisacetamide (HMBA) or bromodeoxyuridine (BUdR). Differentiation, 43(2): 131–138.

    PubMed  CAS  Google Scholar 

  • Bahrami, A.R., Matin, M.M., et al. (2005) The CDK inhibitor p27 enhances neural differentiation in pluripotent NTERA2 human EC cells, but does not permit differentiation of 2102Ep nullipotent human EC cells. Mech. Dev., 122(9): 1034–1042.

    PubMed  CAS  Google Scholar 

  • Bani-Yaghoub, M., Bechberger, J.F., et al. (1997) Reduction of connexin43 expression and dye-coupling during neuronal differentiation of human NTera2/clone D1 cells. J. Neurosci. Res., 49(1): 19–31.

    PubMed  CAS  Google Scholar 

  • Bani-Yaghoub, M., Bechberger, J.F., et al. (1999) The effects of gap junction blockage on neuronal differentiation of human NTera2/clone D1 cells. Exp. Neurol., 156(1): 16–32.

    PubMed  CAS  Google Scholar 

  • Bani-Yaghoub, M., Felker, J.M., et al. (1999) Human NT2/D1 cells differentiate into functional astrocytes. Neuroreport, 10(18): 3843–3846.

    PubMed  CAS  Google Scholar 

  • Begemann, G., Schilling, T.F., et al. (2001) The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development, 128(16): 3081–3094.

    PubMed  CAS  Google Scholar 

  • Bittman, K., Owens, D.F., et al. (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J. Neurosci., 17(18): 7037–7044.

    PubMed  CAS  Google Scholar 

  • Bottero, L., Simeone, A., et al. (1991) Differential activation of homeobox genes by retinoic acid in human embryonal carcinoma cells. Recent Results Cancer Res., 123: 133–143.

    PubMed  CAS  Google Scholar 

  • Brinster, R.L. (1974) The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med., 140(4): 1049–1056.

    PubMed  CAS  Google Scholar 

  • Carpenter, M.K., Cui, X., et al. (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol., 158(2): 265–278.

    PubMed  CAS  Google Scholar 

  • Chaganti, R.S., Rodriguez, E., et al. (1993) Cytogenetics of male germ-cell tumors. Urol. Clin. North Am., 20(1): 55–66.

    PubMed  CAS  Google Scholar 

  • Ciani, L. and Salinas, P.C. (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat. Rev. Neurosci., 6(5): 351–362.

    PubMed  CAS  Google Scholar 

  • Damjanov, I. (1993a) Pathogenesis of testicular germ cell tumours. Eur. Urol., 23(1): 2–5; discussion 6–7.

    PubMed  CAS  Google Scholar 

  • Damjanov, I. (1993b) Teratocarcinoma: neoplastic lessons about normal embryogenesis. Int. J. Dev. Biol., 37(1): 39–46.

    PubMed  CAS  Google Scholar 

  • Damjanov, I. and Andrews, P.W. (1983) Ultrastructural differentiation of a clonal human embryonal carcinoma cell line in vitro. Cancer Res., 43(5): 2190–2198.

    PubMed  CAS  Google Scholar 

  • Damjanov, I. and Solter, D. (1974) Experimental teratoma. Curr. Top. Pathol., 59: 69–130.

    PubMed  CAS  Google Scholar 

  • Draper, J.S., Pigott, C., et al. (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat., 200(Pt 3): 249–258.

    PubMed  CAS  Google Scholar 

  • Draper, J.S., Smith, K., et al. (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol., 22(1): 53–54.

    PubMed  CAS  Google Scholar 

  • Dupe, V., Davenne, M., et al. (1997) In vivo functional analysis of the Hoxa-1 3¢ retinoic acid response element (3¢RARE). Development, 124(2): 399–410.

    PubMed  CAS  Google Scholar 

  • Duran, C., Talley, P.J., et al. (2001) Hybrids of pluripotent and nullipotent human embryonal carcinoma cells: partial retention of a pluripotent phenotype. Int. J. Cancer, 93(3): 324–332.

    PubMed  CAS  Google Scholar 

  • Evans, M.J. and Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292: 154–156.

    PubMed  CAS  Google Scholar 

  • Fenderson, B.A., Andrews, P.W., et al. (1987) Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev. Biol., 122(1): 21–34.

    PubMed  CAS  Google Scholar 

  • Ferrari, A., Ehler, E., et al. (2000) Immature human NT2 cells grafted into mouse brain differentiate into neuronal and glial cell types. FEBS Lett., 486(2): 121–125.

    PubMed  CAS  Google Scholar 

  • Finch, B.W. and Ephrussi, B. (1967) Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc. Natl. Acad. Sci. USA, 57(3): 615–621.

    PubMed  Google Scholar 

  • Fogh, J. and Trempe, G. (1975) New human tumor cell lines. In: Human Tumor Cells In Vitro (Eds. Fogh, J.). Plenum Press, NY, pp. 115–159.

    Google Scholar 

  • Guillemain, I., Alonso, G., et al. (2000) Human NT2 neurons express a large variety of neurotransmission phenotypes in vitro. J. Comp. Neurol., 422(3): 380–395.

    PubMed  CAS  Google Scholar 

  • Hartley, R.S., Margulis, M., et al. (1999) Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes. J. Comp. Neurol., 407(1): 1–10.

    PubMed  CAS  Google Scholar 

  • Hata, J., Fujita, H., et al. (1989) [Differentiation of human germ cell tumor cells]. Hum. Cell, 2(4): 382–387.

    PubMed  CAS  Google Scholar 

  • Hay, D.C., Sutherland, L., et al. (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells, 22(2): 225–235.

    PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou, A. and Melton, D. (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell, 88(1): 13–17.

    PubMed  CAS  Google Scholar 

  • Henderson, J.K., Draper, J.S., et al. (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells, 20(4): 329–337.

    PubMed  CAS  Google Scholar 

  • Hogan, B., Fellous, M., et al. (1977) Isolation of a human teratoma cell line which expresses F9 antigen. Nature, 270(5637): 515–518.

    PubMed  CAS  Google Scholar 

  • Holden, S., Bernard, O., et al. (1977) Human and mouse embryonal carcinoma cells in culture share an embryonic antigen (F9). Nature, 270(5637): 518–520.

    PubMed  CAS  Google Scholar 

  • Hovatta, O., Mikkola, M., et al. (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod., 18(7): 1404–1409.

    PubMed  Google Scholar 

  • Iacovitti, L., Stull, N.D., et al. (2001) Differentiation of human dopamine neurons from an embryonic carcinomal stem cell line. Brain Res., 912(1): 99–104.

    PubMed  CAS  Google Scholar 

  • Irioka, T., Watanabe, K., et al. (2005) Distinct effects of caudalizing factors on regional specification of embryonic stem cell-derived neural precursors. Brain Res. Dev. Brain Res., 154(1): 63–70.

    PubMed  CAS  Google Scholar 

  • Jacob, F. (1978) The Leeuwenhoek lecture, 1977. Mouse teratocarcinoma and mouse embryo. Proc. R. Soc. Lond. B. Biol. Sci., 201(1144): 249–270.

    PubMed  CAS  Google Scholar 

  • Jakob, H., Boon, T., et al. (1973) [Teratocarcinoma of the mouse: isolation, culture and properties of pluripotential cells]. Ann. Microbiol. (Paris), 124(3): 269–282.

    CAS  Google Scholar 

  • Jacobson, M. (1991) Developmantal Neurobiology. Plenum press, New York.

    Google Scholar 

  • Kahan, B.W. and Ephrussi, B. (1970) Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J. Natl. Cancer Inst., 44(5): 1015–1036.

    PubMed  CAS  Google Scholar 

  • Kanda, Y., Katsura, K., et al. (2005) Milk growth factor (MGF)-induced differentiation of NT2/D1 cells. Neurosci. Lett., 384(3): 260–264.

    PubMed  CAS  Google Scholar 

  • Kannagi, R., Cochran, N.A., et al. (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J., 2(12): 2355–2361.

    PubMed  CAS  Google Scholar 

  • Kawasaki, H., Mizuseki, K., et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 28(1): 31–40.

    PubMed  CAS  Google Scholar 

  • Kleinsmith, L.J. and Pierce, G.B., Jr. (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res., 24: 1544–1551.

    PubMed  CAS  Google Scholar 

  • Knowles, B.B., Aden, D.P., et al. (1978) Monoclonal antibody detecting a stage-specific embryonic antigen (SSEA-1) on preimplantation mouse embryos and teratocarcinoma cells. Curr. Top. Microbiol. Immunol., 81: 51–53.

    PubMed  CAS  Google Scholar 

  • Kraggerud, S.M., Skotheim, R.I., et al. (2002) Genome profiles of familial/bilateral and sporadic testicular germ cell tumors. Genes Chromosomes Cancer, 34(2): 168–174.

    PubMed  CAS  Google Scholar 

  • Lee, V.M., Hartley, R.S., et al. (2000) Neurobiology of human neurons (NT2N) grafted into mouse spinal cord: implications for improving therapy of spinal cord injury. Prog. Brain Res., 128: 299–307.

    PubMed  CAS  Google Scholar 

  • Leypoldt, F., Lewerenz, J., et al. (2001) Identification of genes up-regulated by retinoic-acid-induced differentiation of the human neuronal precursor cell line NTERA-2 cl.D1. J. Neurochem., 76(3): 806–814.

    PubMed  CAS  Google Scholar 

  • Longo, L., Bygrave, A., et al. (1997) The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res., 6(5): 321–328.

    PubMed  CAS  Google Scholar 

  • Marchal-Victorion, S., Deleyrolle, L., et al. (2003) The human NTERA2 neural cell line generates neurons on growth under neural stem cell conditions and exhibits characteristics of radial glial cells. Mol. Cell Neurosci., 24(1): 198–213.

    PubMed  CAS  Google Scholar 

  • Martin, G.R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA, 78: 7634–7636.

    PubMed  CAS  Google Scholar 

  • Martin, G.R. and Evans, M.J. (1974) The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell, 2(3): 163–172.

    PubMed  CAS  Google Scholar 

  • Martin, G.R. and Evans, M.J. (1975) Differentiation of clonal lines of teratocarcinomas cells: formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA, 72: 1441–1445.

    PubMed  CAS  Google Scholar 

  • Matin, M.M., Walsh, J.R., et al. (2004) Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells, 22(5): 659–668.

    PubMed  CAS  Google Scholar 

  • Mavilio, F., Simeone, A., et al. (1988) Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid. Differentiation, 37(1): 73–79.

    PubMed  CAS  Google Scholar 

  • Mintz, B. and Illmensee, K. (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA, 72(9): 3585–3589.

    PubMed  CAS  Google Scholar 

  • Misiuta, I.E., Anderson, L., et al. (2003) The transcription factor Nurr1 in human NT2 cells and hNT neurons. Brain Res. Dev. Brain Res., 145(1): 107–115.

    PubMed  CAS  Google Scholar 

  • Moasser, M.M., DeBlasio, A., et al. (1994) Response and resistance to retinoic acid are mediated through the retinoic acid nuclear receptor gamma in human teratocarcinomas. Oncogene, 9(3): 833–840.

    PubMed  CAS  Google Scholar 

  • Nelson, P.T., Kondziolka, D., et al. (2002) Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol., 160(4): 1201–1206.

    PubMed  Google Scholar 

  • Nicolas, J.F., Dubois, P., et al. (1975) [Mouse teratocarcinoma: differentiation in cultures of a multipotential primitive cell line]. Ann. Microbiol. (Paris), 126(1): 3–22.

    CAS  Google Scholar 

  • Niederreither, K., Vermot, J., et al. (2000) Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development, 127(1): 75–85.

    PubMed  CAS  Google Scholar 

  • Niwa, H., Miyazaki, J., et al. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet., 24(4): 372–376.

    PubMed  CAS  Google Scholar 

  • Okabe, S., Forsberg-Nilsson, K., et al. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59(1): 89–102.

    PubMed  CAS  Google Scholar 

  • Papaioannou, V.E., McBurney, M.W., et al. (1975) Fate of teratocarcinoma cells injected into early mouse embryos. Nature, 258(5530): 70–73.

    PubMed  CAS  Google Scholar 

  • Park, C.H., Minn, Y.K., et al. (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem., 92(5): 1265–1276.

    PubMed  CAS  Google Scholar 

  • Pera, M.F., Cooper, S., et al. (1989) Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation, 42(1): 10–23.

    PubMed  CAS  Google Scholar 

  • Pevny, L.H., Sockanathan, S., et al. (1998) A role for SOX1 in neural determination. Development, 125(10): 1967–1978.

    PubMed  CAS  Google Scholar 

  • Pierce, G.B. (1975) Teratocarcinomas: introduction and perspectives. In: Teratomas and Differentiation (Ed.: Sherman, M.I. and Solter, D.) Academic Press, New York, pp. 3–12.

    Google Scholar 

  • Pleasure, S.J. and Lee, V. M. (1993) NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J. Neurosci. Res., 35(6): 585–602.

    PubMed  CAS  Google Scholar 

  • Pleasure, S.J., Page, C., et al. (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci., 12(5): 1802–1815.

    PubMed  CAS  Google Scholar 

  • Przyborski, S.A., Morton, I.E., et al. (2000) Developmental regulation of neurogenesis in the pluripotent human embryonal carcinoma cell line NTERA-2. Eur. J. Neurosci., 12(10): 3521–3528.

    PubMed  CAS  Google Scholar 

  • Przyborski, S.A., Smith, S., et al. (2003) Transcriptional profiling of neuronal differentiation by human embryonal carcinoma stem cells in vitro. Stem Cells, 21(4): 459–471.

    PubMed  CAS  Google Scholar 

  • Qualtrough, J.D. (1998) Bone Morphogenetic Proteins in Human Embryonal Carcinoma Cells. Thesis. Sheffield University Library.

    Google Scholar 

  • Reubinoff, B.E., Itsykson, P., et al. (2001) Neural progenitors from human embryonic stem cells. Nat. Biotechnol., 19(12): 1134–1140.

    PubMed  CAS  Google Scholar 

  • Reubinoff, B.E., Pera, M.F., et al. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol., 18(4): 399–404.

    PubMed  CAS  Google Scholar 

  • Rosenberg, C., Schut, T.B., et al. (1999) Chromosomal gains and losses in testicular germ cell tumors of adolescents and adults investigated by a modified comparative genomic hybridization approach. Lab. Invest., 79(12): 1447–1451.

    PubMed  CAS  Google Scholar 

  • Saporta, S., Willing, A.E., et al. (2004) Rapid differentiation of NT2 cells in Sertoli-NT2 cell tissue constructs grown in the rotating wall bioreactor. Brain Res. Bull., 64(4): 347–356.

    CAS  Google Scholar 

  • Schulz, T.C., Noggle, S.A., et al. (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells, 22(7): 1218–1238.

    PubMed  CAS  Google Scholar 

  • Schwartz, C.M., Spivak, C.E., et al. (2005) NTera2: a model system to study dopaminergic differentiation of human embryonic stem cells. Stem Cells Dev., 14(5): 517–534.

    PubMed  CAS  Google Scholar 

  • Shevinsky, L.H., Knowles, B.B., et al. (1982) Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell, 30(3): 697–705.

    PubMed  CAS  Google Scholar 

  • Skakkebaek, N.E. (1972) Possible carcinoma-in-situ of the testis. Lancet, 2(7776): 516–517.

    PubMed  CAS  Google Scholar 

  • Skakkebaek, N.E., Berthelsen, J.G., et al. (1987) Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int. J. Androl., 10(1): 19–28.

    PubMed  CAS  Google Scholar 

  • Skotheim, R.I., Monni, O., et al. (2002) New insights into testicular germ cell tumorigenesis from gene expression profiling. Cancer Res., 62(8): 2359–2364.

    PubMed  CAS  Google Scholar 

  • Slack, J.M. and Tannahill, D. (1992) Mechanism of anteroposterior axis specification in vertebrates. Lessons from the amphibians. Development, 114(2): 285–302.

    CAS  Google Scholar 

  • Sodja, C., Fang, H., et al. (2002) Identification of functional dopamine receptors in human teratocarcinoma NT2 cells. Brain Res. Mol. Brain Res., 99(2): 83–91.

    PubMed  CAS  Google Scholar 

  • Solter, D. and Knowles, B.B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA, 75(11): 5565–5569.

    PubMed  CAS  Google Scholar 

  • Sperger, J.M., Chen, X., et al. (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl. Acad. Sci. USA, 100(23): 13350–13355.

    PubMed  CAS  Google Scholar 

  • Stevanovic, M. (2003) Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2. Mol. Biol. Rep., 30(2): 127–132.

    PubMed  CAS  Google Scholar 

  • Stevens, L.C. (1967) Origin of testicular teratomas from primordial germ cells in mice. J. Natl. Cancer Inst., 38(4): 549–552.

    PubMed  CAS  Google Scholar 

  • Stevens, L.C. and Little, C.C. (1954) Spontaneous testicular teratomas in an inbred strain of mice. Proc. Natl. Acad. Sci. USA, 40(11): 1080–1087.

    PubMed  CAS  Google Scholar 

  • Strickland, S. and Mahdavi, V. (1978) The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell, 15(2): 393–403.

    PubMed  CAS  Google Scholar 

  • Studer, M., Popperl, H., et al. (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science, 265(5179): 1728–1732.

    PubMed  CAS  Google Scholar 

  • Tang, K., Yang, J., et al. (2002) Wnt-1 promotes neuronal differentiation and inhibits gliogenesis in P19 cells. Biochem. Biophys. Res. Commun., 293(1): 167–173.

    PubMed  CAS  Google Scholar 

  • Teshima, S., Shimosato, Y., et al. (1988) Four new human germ cell tumor cell lines. Lab. Invest., 59(3): 328–336.

    PubMed  CAS  Google Scholar 

  • Thompson, S., Stern, P.L., et al. (1984) Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J. Cell Sci., 72: 37–64.

    PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145–1147.

    PubMed  CAS  Google Scholar 

  • Tropepe, V., Hitoshi, S., et al. (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron, 30(1): 65–78.

    PubMed  CAS  Google Scholar 

  • Wakeman, J.A., Walsh, J., et al. (1998) Human Wnt-13 is developmentally regulated during the differentiation of NTERA-2 pluripotent human embryonal carcinoma cells. Oncogene, 17(2): 179–186.

    PubMed  CAS  Google Scholar 

  • Walsh, J. and Andrews, P.W. (2003) Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cell. APMIS, 111(1): 197–210; discussion 210–211.

    PubMed  CAS  Google Scholar 

  • Wheeler, J.E. (1983) History of teratomas. In: The Human Teratomas: Experimental and Clinical Biology (Ed.: Damjanov, I., Knowles, B.B., and Solter, D.), Humana Press, Clifton, NJ, pp. 1–22.

    Google Scholar 

  • Wichterle, H., Lieberam, I., et al. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell, 110(3): 385–397.

    PubMed  CAS  Google Scholar 

  • Wong, R.C., Pebay, A., et al. (2004) Presence of functional gap junctions in human embryonic stem cells. Stem Cells, 22(6): 883–889.

    PubMed  CAS  Google Scholar 

  • Xu, R.H., Chen, X., et al. (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol., 20(12): 1261–1264.

    PubMed  CAS  Google Scholar 

  • Xu, R.H., Peck, R.M., et al. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods, 2(3): 185–190.

    PubMed  CAS  Google Scholar 

  • Xu, T., Gregory, C.A., et al. (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 27(19): 4181–4186.

    Google Scholar 

  • Yoon, K. and Gaiano, N. (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci., 8(6): 709–715.

    PubMed  CAS  Google Scholar 

  • Zhang, S.C., Wernig, M., et al. (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol., 19(12): 1129–1133.

    PubMed  CAS  Google Scholar 

  • Zigova, T., Barroso, L.F., et al. (2000) Dopaminergic phenotype of hNT cells in vitro. Brain Res. Dev. Brain Res., 122(1): 87–90.

    PubMed  CAS  Google Scholar 

  • zur Nieden, N.I., Kempka, G., et al. (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev. Biol., 5(1): 1.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Tonge, P.D., Andrews, P.W. (2007). Human Embryonal Carcinoma (EC) Cells: Complementary Tools for Embryonic Stem Cell Research. In: Masters, J.R., Palsson, B.O., Thomson, J.A. (eds) Human Cell Culture. Human Cell Culture, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5983-4_13

Download citation

Publish with us

Policies and ethics