Skip to main content

Defined Culture Media for Human Embryonic Stem Cells

  • Chapter
Human Cell Culture

Part of the book series: Human Cell Culture ((HUCC,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amit, M. et al. (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol., 227: 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Amit, M. et al. (2003) Human feeder layers for human embryonic stem cells. Biol. Reprod., 68: 2150–2156.

    Article  PubMed  CAS  Google Scholar 

  • Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J. (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod., 70: 837–845.

    Article  PubMed  CAS  Google Scholar 

  • Beattie, G.M. et al. (2005) Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem. Cells, 23: 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Buzzard, J.J., Gough, N.M., Crook, J.M. and Colman, A. (2004) Karyotype of human ES cells during extended culture. Nat. Biotechnol., 22: 381–382; author reply 382.

    Google Scholar 

  • Charles, A.K. (1986) Pipecolic acid receptors in rat cerebral cortex. Neurochem. Res., 11: 521–525 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L., Hammond, H., Ye, Z., Zhan, X., and Dravid, G. (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem. Cells, 21: 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Choo, A.B., Padmanabhan, J., Chin, A.C., and Oh, S.K. (2004) Expansion of pluripotent human embryonic stem cells on human feeders. Biotechnol. Bioeng., 88: 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Daheron, L. et al. (2004) LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem. Cells, 22: 770–778.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, J.T., Harris, I.R., Kearney, J.N., and Ingham, E. (1995) Calcium: a crucial consideration in serum-free keratinocyte culture. Exp. Dermatol., 4: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Draper, J.S., Moore, H.D., Ruban, L.N., Gokhale, P.J., and Andrews, P.W. (2004) Culture and characterization of human embryonic stem cells. Stem. Cells Dev., 13: 325–336.

    Article  PubMed  CAS  Google Scholar 

  • Dravid, G. et al. (2005) Defining the role of Wnt/b-catenin signaling in the survival, proliferation and self-renewal of human embryonic stem cells. Stem. Cells Express, 23: 150–165.

    Google Scholar 

  • Evans, M.J. (1972) The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J. Embryol. Exp. Morphol., 28: 163–176.

    PubMed  CAS  Google Scholar 

  • Evans, M.J., and Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292: 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Genbacev, O. et al. (2005) Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil. Steril., 83: 1517–1529.

    Article  PubMed  Google Scholar 

  • Hovatta, O. et al. (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod., 18: 1404–1409.

    Article  PubMed  Google Scholar 

  • James, D., Levine, A., Besser, D., and Hemmati-Brivanlou (2005) TGFb/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132: 1273–1282.

    Article  PubMed  CAS  Google Scholar 

  • Klein, P.S. and Melton, D.A. (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA, 93: 8455–8459.

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya, I. et al. (2005) Human embryonic stem cells derived without feeder cells. Lancet, 365: 1636–1641.

    Article  PubMed  CAS  Google Scholar 

  • Lane, M. and Bavister, B.D. (1998) Calcium homeostasis in early hamster preimplantation embryos. Biol. Reprod., 59: 1000–1007.

    Article  PubMed  CAS  Google Scholar 

  • Lane, M., Boatman, D.E., Albrecht, R.M., and Bavister, B.D. (1998) Intracellular divalent cation homeostasis and developmental competence in the hamster preimplantation embryo. Mol. Reprod. Dev., 50: 443–450.

    Article  PubMed  CAS  Google Scholar 

  • Levenstein, M.E. et al. (2005) Basic FGF support of human embryonic stem cell self-renewal. Stem. Cells.

    Google Scholar 

  • Li, Y., Powell, S., Brunette, E., Lebkowski, J., and Mandalam, R. (2005) Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol. Bioeng., 91: 688–698.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, T.E. et al. (2006) Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol., 24: 185–187.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA., 78.

    Google Scholar 

  • Martin, M.J., Muotri, A., Gage, F., and Varki, A. (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med., 11: 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Mitalipova, M.M. et al. (2005) Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol., 23: 19–20.

    Article  PubMed  CAS  Google Scholar 

  • Owens, D.F. and Kriegstein, A.R. (2002) Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3: 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Puck, T.T. and Marcus, P.I. (1955) Rapid method for viable cell titration and clone production with HeLa cells on tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc. Natl. Acad. Sci. USA, 4: 432–437.

    Article  Google Scholar 

  • Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol., 18: 399–404.

    Article  PubMed  CAS  Google Scholar 

  • Richards, M. et al. (2003) Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem. Cells, 21: 546–556.

    Article  PubMed  CAS  Google Scholar 

  • Richards, M., Fong, C.Y., Chan, W.K., Wong, P.C., and Bongso, A. (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol., 20: 933–936.

    Article  PubMed  CAS  Google Scholar 

  • Sato, N. et al. (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol., 260: 404–413.

    Article  PubMed  CAS  Google Scholar 

  • Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou, A.H. (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med., 10: 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D.A., and Benvenisty, N. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 97: 11307–11312.

    Article  PubMed  CAS  Google Scholar 

  • Sperger, J.M. et al. (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl. Acad. Sci. USA, 100: 13350–13355.

    Article  PubMed  CAS  Google Scholar 

  • Stojkovic, P. et al. (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem. Cells, 23: 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Takahama, K. et al. (1986) Pipecolic acid enhancement of GABA response in single neurons of rat brain. Neuropharmacology, 25: 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A. et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Vallier, L., Alexander, M., and Pedersen, R.A. (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci., 118: 4495–4509.

    Article  PubMed  CAS  Google Scholar 

  • Vallier, L., Reynolds, D., and Pedersen, R.A. (2004) Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol., 275: 403–421.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Li, L., Menendez, P., Cerdan, C., and Bhatia, M. (2005) Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 105: 4598–4603.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., and Hayasaki, H. (2002) GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol., 213: 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C. et al. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol., 19: 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C. et al. (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem. Cells, 23: 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Xu, R.H. et al. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods, 2: 185–190.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ludwig, T., Thomson, J.A. (2007). Defined Culture Media for Human Embryonic Stem Cells. In: Masters, J.R., Palsson, B.O., Thomson, J.A. (eds) Human Cell Culture. Human Cell Culture, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5983-4_1

Download citation

Publish with us

Policies and ethics