Skip to main content

Chromatin Immunoprecipitation (ChIP) to Study DNA–Protein Interactions

  • Protocol
  • First Online:
Proteomic Profiling

Abstract

Chromatin immunoprecipitation (ChIP) is a method used to examine the genomic localization of a target of interest (e.g., proteins, protein posttranslational modifications, or DNA elements). As ChIP provides a snapshot of in vivo DNA–protein interactions, it lends insight to the mechanisms of gene expression and genome regulation. This chapter provides a detailed protocol focused on native-ChIP (N-ChIP), a robust approach to profile stable DNA–protein interactions. We also describe best practices for ChIP , including defined controls to ensure specific and efficient target enrichment and methods for data normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pillai S, Dasgupta P, Chellappan SP (2009) Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 523:323–339. https://doi.org/10.1007/978-1-59745-190-1_22

    Article  CAS  PubMed  Google Scholar 

  2. Bernstein BE, Humphrey EL, Liu CL, Schreiber SL (2004) The use of chromatin immunoprecipitation assays in genome-wide analyses of histone modifications. Methods Enzymol 376:349–360. https://doi.org/10.1016/S0076-6879(03)76023-6

    Article  CAS  PubMed  Google Scholar 

  3. Kirmizis A, Farnham PJ (2004) Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med 229:705–721. https://doi.org/10.1177/153537020422900803

    Article  CAS  Google Scholar 

  4. Johnson KD, Bresnick EH (2002) Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods 26:27–36. https://doi.org/10.1016/S1046-2023(02)00005-1

    Article  CAS  PubMed  Google Scholar 

  5. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81:4275–4279

    Article  CAS  Google Scholar 

  6. Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5:2009–2018. https://doi.org/10.1128/mcb.5.8.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoffman EA, Frey BL, Smith LM, Auble DT (2015) Formaldehyde crosslinking: a tool for the study of chromatin complexes. J Biol Chem 290:26404–26411. https://doi.org/10.1074/jbc.R115.651679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurdistani SK, Grunstein M (2003) In vivo protein–protein and protein–DNA crosslinking for genomewide binding microarray. Methods 31:90–95

    Article  CAS  Google Scholar 

  9. Kurdistani SK, Robyr D, Tavazoie S, Grunstein M (2002) Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31:248–254

    Article  CAS  Google Scholar 

  10. Zeng P-Y, Vakoc CR, Chen Z-C et al (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. BioTechniques 41:694, 696, 698. https://doi.org/10.2144/000112297

    Article  CAS  PubMed  Google Scholar 

  11. Nowak DE, Tian B, Brasier AR (2005) Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation. BioTechniques 39:715–725

    Article  CAS  Google Scholar 

  12. Turner B (2001) ChIP with native chromatin: advantages and problems relative to methods using cross-linked material. In: Mapping protein/DNA interactions by cross-linking. Institut national de la santé et de la recherche médicale, Paris

    Google Scholar 

  13. Baranello L, Kouzine F, Sanford S, Levens D (2016) ChIP bias as a function of cross-linking time. Chromosome Res 24:175–181. https://doi.org/10.1007/s10577-015-9509-1

    Article  CAS  PubMed  Google Scholar 

  14. Bordeaux J, Welsh A, Agarwal S et al (2010) Antibody validation. BioTechniques 48:197–209. https://doi.org/10.2144/000113382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Egelhofer TA, Minoda A, Klugman S et al (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93. https://doi.org/10.1038/nsmb.1972

    Article  CAS  PubMed  Google Scholar 

  16. Baker M (2015) Reproducibility crisis: blame it on the antibodies. Nature 521:274–276. https://doi.org/10.1038/521274a

    Article  CAS  PubMed  Google Scholar 

  17. Weller MG (2018) Ten basic rules of antibody validation. Anal Chem Insights 13:1177390118757462. https://doi.org/10.1177/1177390118757462

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nishikori S, Hattori T, Fuchs SM et al (2012) Broad ranges of affinity and specificity of anti-histone antibodies revealed by a quantitative peptide immunoprecipitation assay. J Mol Biol 424:391–399. https://doi.org/10.1016/j.jmb.2012.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rothbart SB, Krajewski K, Strahl BD, Fuchs SM (2012) Peptide microarrays to interrogate the histone code. Methods Enzymol 512:107–135. https://doi.org/10.1016/B978-0-12-391940-3.00006-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bock I, Dhayalan A, Kudithipudi S et al (2011) Detailed specificity analysis of antibodies binding to modified histone tails with peptide arrays. Epigenetics 6:256–263. https://doi.org/10.4161/epi.6.2.13837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fuchs SM, Krajewski K, Baker RW et al (2011) Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr Biol 21:53–58. https://doi.org/10.1016/j.cub.2010.11.058

    Article  CAS  PubMed  Google Scholar 

  22. Grzybowski AT, Chen Z, Ruthenburg AJ (2015) Calibrating ChIP-Seq with Nucleosomal internal standards to measure histone modification density genome wide. Mol Cell 58:886–899. https://doi.org/10.1016/j.molcel.2015.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shah RN, Grzybowski AT, Cornett EM et al (2018) Examining the roles of H3K4 methylation states with systematically characterized antibodies. Mol Cell 72:162–177.e7. https://doi.org/10.1016/j.molcel.2018.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orlando DA, Chen MW, Brown VE et al (2014) Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep 9:1163–1170. https://doi.org/10.1016/j.celrep.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  25. Egan B, Yuan C-C, Craske ML et al (2016) An alternative approach to ChIP-Seq normalization enables detection of genome-wide changes in histone H3 lysine 27 Trimethylation upon EZH2 inhibition. PLoS One 11:e0166438. https://doi.org/10.1371/journal.pone.0166438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brand M, Rampalli S, Chaturvedi C-P, Dilworth FJ (2008) Analysis of epigenetic modifications of chromatin at specific gene loci by native chromatin immunoprecipitation of nucleosomes isolated using hydroxyapatite chromatography. Nat Protoc 3:398–409. https://doi.org/10.1038/nprot.2008.8

    Article  CAS  PubMed  Google Scholar 

  27. Peach SE, Rudomin EL, Udeshi ND et al (2012) Quantitative assessment of chromatin immunoprecipitation grade antibodies directed against histone modifications reveals patterns of co-occurring marks on histone protein molecules. Mol Cell Proteomics 11:128–137. https://doi.org/10.1074/mcp.M111.015941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cousens LS, Gallwitz D, Alberts BM (1979) Different accessibilities in chromatin to histone acetylase. J Biol Chem 254:1716–1723

    Article  CAS  Google Scholar 

  29. Hardie G (1999) Protein phosphorylation: a practical approach: a practical approach. OUP, Oxford

    Google Scholar 

  30. Vallianatos CN, Raines B, Porter RS et al (2020) Mutually suppressive roles of KMT2A and KDM5C in behaviour, neuronal structure, and histone H3K4 methylation. Commun Biol 3:278. https://doi.org/10.1038/s42003-020-1001-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lam K-WG, Brick K, Cheng G et al (2019) Cell-type-specific genomics reveals histone modification dynamics in mammalian meiosis. Nat Commun 10:3821. https://doi.org/10.1038/s41467-019-11820-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tay RE, Olawoyin O, Cejas P et al (2020) Hdac3 is an epigenetic inhibitor of the cytotoxicity program in CD8 T cells. J Exp Med 217:e20191453. https://doi.org/10.1084/jem.20191453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grzybowski AT, Shah RN, Richter WF, Ruthenburg AJ (2019) Native internally calibrated chromatin immunoprecipitation for quantitative studies of histone post-translational modifications. Nat Protoc 14:3275–3302. https://doi.org/10.1038/s41596-019-0218-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health under award numbers R44HG008907, R44GM116584 and R43CA232941 to EpiCypher, Inc. The authors would like to thank Rohan N. Shah, Adrian T. Grzybowski, and Alexander J. Ruthenburg (Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL) for sharing protocols and generation of the raw data analyzed in Fig. 2 [23].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliza C. Small .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Small, E.C., Maryanski, D.N., Rodriguez, K.L., Harvey, K.J., Keogh, MC., Johnstone, A.L. (2021). Chromatin Immunoprecipitation (ChIP) to Study DNA–Protein Interactions. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 2261. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1186-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1186-9_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1185-2

  • Online ISBN: 978-1-0716-1186-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics